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ABSTRACT 

Plasma tempera tures   and   to ta l   rad ian t   in tens i t ies  were measured i n  a i r  

p lasmas   c rea ted   in   the   re f lec ted  shock region  of a 12-inch  diameter,  arc- 

driven shock tube. The temperatures were requi red   to   explore   the   d i f fe r -  

ence  between t h e   t o t a l   i n t e n s i t y  measurements  and theo re t i ca l   p red ic t ions  

which were evaluated a t  the  gasdynamic property  values .  The temperature 

measurements ut i l ized  the  fol lowing  spectroscopic   techniques : (1) measuring 

the   in tegra ted   in tens i ty   o f   cer ta in   a tomic   l ines   and   mul t ip le t s ,  (2 )  f i t t i n g  

p r o f i l e s   t o  measured line  shapes,  and (3) measuring  the  spectral   in tensi ty  

of   the continuum a t  4935 A. Temperatures  between 10,750-13,000 K were  measured 

with a typical   precis ion  of  2 4%. This  precision  could  not  be  maintained a t  

higher  temperatures. The r e s u l t s   i n d i c a t e   t h a t ,  on the  average,   the  measured 

temperatures were 4% below the  gasdynamic values which could  account   for  the 

difference between t h e   t o t a l   i n t e n s i t y  measurements  and the   p red ic t ions   i n  

th i s   t empera ture   range .   Fur ther ,   the   e r ra t ic   shot   to   shot   devia t ions  of 0 

t o  8% between t h e  measured  and  gasdynamic  temperatures  suggests  that  the  actual 

plasma  temperatures were not  adequately  predictable  from  the  incident shock 

veloci ty .  
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FINAL REPORT 

Contract NAS 7-579 
RADIANT ENERGY TRANSFER  MEAsURBfENTS IN A I R  

INTRODUCTION 

The  work done under t h i s  cont rac t  can b e   s p l i t   i n t o  two d i s t i n c t  areas: one 

involves  measurements  and  theoretical   predictions  of  the  spectrally-integrated 

radiant  intensity  of  high-temperature a i r  while   the  other   concerns  spectral  

measurements obtained  using  various  spectroscopic  techniques.  Because t h e  

l a t e s t  r e su l t s   o f  the spec t ra l ly- in tegra ted  area have already  been  published, 

t h i s   e f f o r t  i s  b r i e f l y  summarized  below. The resul ts   and  conclusions  obtained 

serve as the in t roduct ion   to   the   spec t roscopic   e f for t  which  occupies the bulk 

of t h i s  repor t .  

1 

The measurements i n   b o t h  areas were performed i n   t h e   r e f l e c t e d  shock region 

of a 12-in. diam. shock  tube  equipped w i t h  an  arc-heated driver. The t e s t  

gas was a i r  a t  P1 = 0.2 t o r r ;  the incident  shock speeds were 6.5-9.5 mm/psec 

and  yielded  ref lected shock  plasmas  of 10-16,000 K, 2-5 a t m ,  and p/p = 0.033 

Amagat s . 0 

The spec t ra l ly- in tegra ted   e f for t   involved  measurements of the  r ad ian t   i n t ens i ty  

from these plasmas a t  paths  of 3-12 em using  energy  detectors   in   both a window- 

less  and a window-type configuration. The s a l i e n t   r e s u l t s  are shown i n  the 

two f igu res   l oca t ed   i n  the appendix of t h i s  report .  These show a comparison 

between the   exper imenta l   resu l t s   and   theore t ica l   p red ic t ions   for   bo th   the  

t o t a l  ( i .e.  windowless) r ad ian t   i n t ens i ty   (F ig .  A - 1 )  and   for  that f rac t ion  

t ransmit ted  by a quartz  window (Fig. A-2). Also  included i n   t h e  appendix are 

tables   containing  numerical   values   for   the  radiant   intensi ty   predict ions 

(Table A-1) and   the   re f lec ted  shock  Hugoniot states (Table A-2) on  which the  

f igu res  were based. A more complete  description  of  the  experimental   apparatus 

and  technique  and the o r ig in   o f   t he   t heo re t i ca l   p red ic t ions  i s  g iven   i n  R e f .  $. 

1 



I I 

The comparisons  between  experiment  and  theory as presented by Figs.  A - 1  and 

A-2 show essen t i a l ly   t he  same behavior: good agreement a t  the  lowest   incident  

shock veloci t ies   with  the  experimental  data f a l l i n g   s t e a d i l y  below the  pre- 

dictions  and  reaching a f ac to r  of two below a t  the  highest   veloci ty .  It Ts 
important   to   appreciate  that the  experiment  measured  the  radiant  intensity as 

a funct ion of incident  shock veloci ty   while   the  predict ions were evaluated a t  
the  thermodynamic s ta tes   ob ta ined  from  gasdynamic considerations.  Therefore 

these  comparisons  between  theory  and  experiment must include a consideration 

of t he   va l id i ty  of the  gasdynamic temperature. 

This  basic  question, which precluded a meaningful  comparison  between  theory 

and  experiment,   motivated  the  spectroscopic  effort  which, in   fac t ,   occupied  

the  bulk of the  past   contractual  period.  This work had two important  objectives.  

The f i r s t  was t o  measure the  plasma  temperature  directly  and  hence  resolve  the 

fundamental   difficulty  discussed above. The second was to   gene ra t e   spec t r a l  

information  about  high-temperature a i r  r ad ia t ion   t o   pe rmi t  a more discerning 

evaluation of cur ren t   rad ia t ion   theor ies .  The e f f o r t  was concentrated on the  

former  and more impor tan t   ob jec t ive .   For   reasons   to   be   d i scussed   la te r ,   the  

plasma  temperatures  were  only  measured t o  13,500 K. However even  these  measure- 

ments  revealed  significant  deviations  between  the  actual  and  the gasdynamic 

plasma  temperature  and  further work i n  the a rea  i s  continuing. 

The temperature measurement  problem  can  be placed  in   perspect ive  by  not ing 

t h a t   t h e   t o t a l   i n t e n s i t y  for a 5 cm path  can  be  represented  by I a POo9 $ 
over   the  condi t ions  of   interest .  The temperature  exponent i s  about  12 a t  

10,000, 9 a t  13,000 and 5.5 a t  16,000 K. Thus a 30% change in   r ad ian t   i n t en -  

s i t y  corresponds t o  a 2% change in  temperature a t  10,000 K and a 5% change a t  

16,000 K. Thus it i s  c lear   tha t   p rec ise   t empera ture  measurements were re- 

quire  d. 

This   high  sensi t ivi ty  of radiat ion  to   temperature ,  which requi res   p rec ise  

temperature  measurements,  can  be  used t o  advantage  by  determining a temperature 

through  measurements  of  radiative  quantities. Two t h a t  proved  suitable were 

the   absolu te   in tens i t ies   o f   cer ta in  well-known atomic  lines  and  the  shapes 

2 
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(i.e. the  half-widths)  of  these  and  other  l ines.  A s  d i scussed   la te r ,  a l i n e  

i n t e n s i t y  measurement y i e lds  a temperature  based on a Boltzmann d i s t r ibu t ion  

of  the  upper state population  while a shape  measurement y i e lds   t he   e l ec t ron  

dens i ty  which i s  related  to   temperature   through  the Saha equation. 

The measurement of these two quant i t ies   required  qui te   different   inst rumenta-  

tion  and  techniques. The l ine  shapes were determined  by  photometric  techniques 

via  time-integrated  spectrograms  taken  using film and a rapid-closing  shut ter  

i n  a spectrograph.  Photographic  recording  captures a wealth  of  information 

abou t   r e l a t ive   spec t r a l   i n t ens i t i e s  which i s  essent ia l   for   de te rmining   l ine  

shapes, however it i s  not  amenable t o  measuring  absolute   spectral   in tensi t ies .  

These  were  measured over   narrow  spectral   in tervals   using  photoelectr ic   record-  

ing  techniques  in a polychromator (i. e. a multi-channel monochromator)  and 

were,  of  course,  time-resolved  measurements. The fea tures  of these two spectro- 

scopic  techniques  are summarized below: 

Recording Time Type of  Spectral  
Instrument Technique Variation Measurement Variation 

Spectrograph Photographic Time-integrated Relat ive  Spectral  

Polychromator Photoelectr ic  Time-resolved Absolute  Spectrally- 
in tegra ted  

A s  noted,  the  techniques complement each  other  and  the combined r e s u l t s  can 

y i e ld  a f a i r l y  complete  picture of the plasma  radiation.  In  fact ,  as w i l l  be 

exp la ined   l a t e r ,   t he   r e su l t s  of both  techniques were requi red   to   ob ta in  

temperatures  from  both  l ine  intensity  and  l ine  shape measurements. 

DESCRIPTION OF APPARATUS AND TECHNIQUE 

Both  types  of  spectroscopic  measurements were made on t h e  same kind  of  instru- 

ment: Model 78-000 Jarrel l -Ash 1.5 meter Wadsworth spectrographs. Each con- 

ta ined  a 590 groove/m  grating  and  could  cover  from 2100 t o  7800 A a t  one 

t ime   i n   f i r s t -o rde r   w i th  a reciprocal  l inear  dispersion  of  about 11.2 A/mm. 

The ru l ed   g ra t ing   a r eas  were 54 x 40 mm which means that   the   instruments  were 

effect ively  f /29  and had a theore t ica l   reso lu t ion   of  0.07 A a t  2200 A and 9.24 
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A a t  7800 A. These  parameters would d i c t a t e  a spectroscopically-optimum 

entrance sl i t  width of about 17 p for   record ing  a t  6,000 A. I n  p rac t i ce  

reso lu t ion  was s a c r i f i c e d   t o   g a i n   l i g h t   a n d  50 p entrance s l i ts  were  used. 

Since  these 50 IJ, entrance s l i ts  were  from 2 t o  8 times  wider than  the  width 

fo r   op t ima l   r e so lu t ion ,   d i f f r ac t ion   e f f ec t s  were small and the   r e so lu t ion  was 

very  near  the  spectral   width of the  entrance s l i t  (0.55 A) as w i l l  be  dis- 

cussed  shortly.  One of these  instruments was used as a conventional  spectro- 

graph  while  the  other was modified  for  use as a polychromator. The spectro- 

scopic  techniques  involved  in  these two d i f fe ren t   usages  w i l l  be  discussed 

separately.  

The terminology i s  however the  same and  begins   wi th   the   spec t ra l   in tens i ty  

( ize .  I A ( h )  i n  W/cm2-sr-p,) emitted by t h e  plasma. Some of t h i s   r a d i a t i o n  

i s  collected  by  the  spectrograph,  dispersed,  and  brought  to a spec t ra l   focus  

along  the  focal   p lane.  Here it i s  character ized  by  the  focal   p lane  heat   f lux 

( i . e .   q ( h )   i n  W/cm ) which var ies   with  dis tance  a long  the  focal   p lane or, 
more conveniently, as wavelength. The ro l e   o f   an   ex i t  s l i t  w i i l  be  discussed 

l a t e r .  A f i lm  placed  here  receives  this  heat  f lux  over  an  exposure  t ime  with 

t h e   r e s u l t   t h a t  a cer ta in   energy  per   uni t   area i s  deposited on the  film. By 

the  photographic  development  process, t h i s   ene rgy   pe r   un i t   a r ea  i s  converted 

in to   an   op t ica l   dens i ty  which,  by  photometric  techniques, i s  converted  back 

i n t o  a spectral   exposure  ( i .e .  e ( A )  i n  erg/cm ) or a r e l a t i v e   s p e c t r a l  

exposure  [e(A)/e(ho)]. A t  t h i s   p o i n t  a d i s t i n c t i o n  i s  made between r e l a t i v e  

spectral   exposure  and  intensi ty .  These are   re la ted  through  the  instrument  

funct ion which w i l l  be  discussed later. F i r s t   t h e  methods  by  which the  

relat ive  exposure was obtained  from  an  exposed film w i l l  be  discussed. 

2 

2 

Homochromatic Photometrv 

The spectrograph was used to   ob ta in   r e l a t ive   spec t r a l   exposures  by the  technique 

of  homochromatic  photometry ( r e f .  Chap. 10 of Sawyer2 or Chap. 7 of  Harrison 

e t  a ~ ~ ) .  This   technique  essent ia l ly  assumes that the  wavelength  intervals 

under  consideration are s u f f i c i e n t l y  narrow that f i lm   sens i t i v i ty   va r i a t ions  

with  wavelength  are  negligible.  Otherwise,  conventional  photometric  techniques 

a r e  employed. 
4 



A photographic  emulsion, upon being  exposed  and  developed,  contains  particles 

of s i l v e r  which make the  negative  appear  dark o r  even black when viewed  by 

transmitted  l ight.   This  darkness i s  character ized  by  an  opt ical   densi ty  

which i s  the  logarithm of the   rec iproca l   t ransmi t tance .  The r e l a t i o n  between 

opt ica l   dens i ty   and   the  amount of exposure i s  expressed as a density-log 

exposure  curve commonly  known as an H-D curve.   Since  opt ical   densi t ies   are  

measured a f t e r   t h e   f a c t ,   a n  H-D curve  can  only  be  obtained i f  the  negat ive 

contains  areas  of known exposure  and, f o r   r e l a t i v e  work, these  exposures 

need  only  be known r e l a t i v e   t o  one another. The whole technique of homo- 

chromatic  photometry  involves  obtaining  and  using  the  appropriate H-D curves. 

However, t h i s  i s  no t   t r i v i a l   because   t he  H-D curves  depend on a great  many 

parameters  including  the  wavelength  and  the  rate, amount, and t i m e  of  exposure, 

the  age,   history  and of course  type  of  film,  and  the many variables  ( t ime, 

temperature,   type,   .concentration,  etc.)   of  the development  process. Good 

technique  requires that the  H-D curves  be  obtained  under  conditions as close 

as possible   to   those  of   the  actual   experiment .  

Because the  Wadsworth  mount i s  stigmatic,  t h i s  w a s  readily  accomplished  by 

placing a ca l ibra ted   neut ra l   dens i ty   s tep  wedge d i r e c t l y   i n   f r o n t  of the  

entrance s l i t  during  the  exposure  to  the plasma rad ia t ion .  The resultant  bands 

of  reduced  exposure  are shown by  the  following  sketch  of a typical   negat ive.  

Neon reference  lines 

'Mercury  reference  line 

1 Unattenuated  exposure 

Six attenuated  steps 

Unattenuated  exposure 

Sketch of a typical  spectrogram  showing  the  various 
exposure  bands  and  the  reference  wavelength  lines. 
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The s t ep  wedge was mounted  on a s p e c i a l   p l a t e  which rep laced   the  Hartmann 

diaphragm typical ly   found on  most spectrographs. The s t e p  wedge had  six, 

metal-f i lm  a t tenuator   s teps  on a quartz   substrate .  The s teps  had o p t i c a l  

densi ty   differences of about 0.2 and  occupied 8 mm of a 15 mm t a l l  entrance 

s l i t .  These  dimensions a r e   r e f l e c t e d   i n   t h e  above  sketch  because  the  spectro- 

graph  had  unity  magnification. 

This   ske tch   a l so   ind ica tes  how t h e   e n t i r e  l 5  mm image d is tance  was u t i l i z e d  

to  record  an  unattenuated  exposure  and  reference  wavelength  information. The 

technique was t o  remove the  dark  s l ide from the  spectrograph camera sho r t ly  

before  each  shot. Then a mercury  spectrum w a s  put   over   the  ent i re   height   of  

the  entrance s l i t  followed  by a neon  spectrum  over  the  extreme  edges.  These 

spectra  were obtained  from  low-pressure  discharge  tubes  and  the  exposure 

times were several  seconds. The purpose of t h e  neon  spectrum was t o  provide 

add i t iona l   l i nes  i n  the   in te res t ing   red   reg ion  where very few f i r s t - o r d e r  

mercury l i n e s   e x i s t .  Then the   s t ep  wedge w a s  inser ted ,   the  shock  tube  fired, 

and f ina l ly   t he   da rk   s l i de  was replaced  and  the  f i lm removed and  developed. 

By this  technique,  each  spectrogram  contained a l l  the  wavelength  information 

needed to  obtain  the  dispersion  and  absolute  wavelengths  and a l l  the  exposure 

information  to   obtain  the H-D curve  of  the  film a t  any  desired  wavelength  and 

hence the   re la t ive   exposure   p rof i le .   This  latter process  involved  several  

s teps  which a re   ou t l ined  below. 

A s  shown above, the   s ix   s teps   o f   the   s tep  wedge produced  bands of reduced 

exposure  across  the  film. The amount of reduction  in  each  band depended on 

the   op t i ca l   dens i ty  of  each  step  and  determining  quantitative values can l ead  

t o  much confusion.  Optical   density i s  defined  by  the  logarithm  of Io/I 
where Io is the  amount of   l ight   incident   and I the  amount t ransmit ted.  

The confusion l i es  i n  how the   t r ansmi t t ed   l i gh t  i s  collected.   Since some 

f i l t e r s  mainly  scatter  l ight  (photographic  emulsion) , some absorb   (ge la t in)  , 
while   others   mainly  ref lect   (metal   f i lm),   the   sol id   angle   used  to   col lect  

the   t ransmi t ted   l igh t  i s  important. Thus o p t i c a l   d e n s i t i e s   a r e   f u r t h e r  
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qua l i f i ed  by the   ad jec t ives   specular  o r  diffuse.  The cor rec t   dens i ty   for  

the  present   appl icat ion w a s  that   obtained by co l lec t ing   the   l igh t   t ransmi t ted  

into  an  f /29  sol id   angle  - t he  same as the  spectrograph. 

To accomplish  this,   the  spectrograph  entrance s l i t  (wi th   the   s tep  wedge i n  

place)  was illuminated  by a tungs ten   s t r ip  lamp. A small s l i t  w a s  placed 

on the  envelope  of a photomultiplier  tube  and  the  sl i t- tube  assembly was 

carefu l ly   loca ted  i n  the  focal   p lane a t  various  wavelengths. Then this 

assembly w a s  racked up and down ( r e f .  above sketch)  across  the  various  bands. 

The r a t i o  of the  outputs  gave the  transmittance of each  step:  they were 

0.63, 0.40, 0.27, 0.17, 0.115, and 0.077 and were uniform from  4500-7000 A. 

The op t i ca l   dens i t i e s  of each  spectrogram were measured  using a Jarrell-Ash 

Model J A  2310 Microdensitometer  equipped  with a s t r ip   char t   recorder .  The 

microdensitometer  output  and  hence  the pen def lec t ion  was l i n e a r l y  pro- 

por t iona l   to   the   t ransmi t tance  T of the  emulsion which i s  r e l a t e d   t o  

density  by D = 2 - loglO(T) with T in   percent .  By using  special   densi ty  

paper   (Bris tol  Chart No. R0333) in   the  recorder ,   the   a lgebraic   conversion 

s t ep  w a s  el iminated  and  density w a s  r ead   d i r ec t ly   ( a lbe i t   non l inea r ly )  from 

the  paper. The microdensitometer s l i t  was t y p i c a l l y   s e t  a t  0.7 mm t a l l   t o  

avoid  the  edges of the  exposure  steps.  Since  the Wadsworth mount i s  only 

t ru ly   s t igmat ic  a t  the  grat ing normal  (5100 A), the  edges became obscure a t  

wavelengths f a r  from the  grating  normal. The width was a compromise value of 

25 p or roughly  half   the  physical  s l i t  width of the  spectrograph. A wider 

microdensitometer s l i t  would in tegra te   across  more f i lm  gra ins  and  hence 

reduce  noise ,   but   this  would a l s o  widen the  indtrument  function which w i l l  

be  discussed  shortly. The scanning  rate w a s  kept low (equivalent of 5.5 A/ 
min) t o  allow  t ime  for  the  recorder pen to   fo l low a l l  the   spec t r a l   de t a i l s .  

H-D curves were constructed by  measuring t h e   o p t i c a l   d e n s i t i e s  of the  various 

exposure  bands a t  the wavelengths  of  spectral   features of i n t e r e s t .  The bas ic  

premise  of  homochromatic  photometry i s  tantamount t o  assuming that each H-D 

curve  applies  over,  say, the f u l l  width of t h e   l i n e  or multiplet  under con- 

sideration.  Therefore,  the  microdensitometer  scan  along  any  exposure  band 
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could  be  converted,  through  the H-D curve, to   an   o rd ina te   o f   re la t ive   exposure .  

Normally the  unattenuated  exposure  band w a s  used for this procedure  since  the 

negatives were generally  underexposed  and it i s  d e s i r a b l e   t o  work on the  most 

l inear   por t ion   o f   the  H-D curve. The reference  wavelengths  included on the  

microdensitometer  scans  allowed  the  wavelength a t  any  point  to  be  determined 

by  l inear   interpolat ion.   In   pract ice   the  wavelengths  were o f t en   r ead   d i r ec t ly  

from a preset  Gerber  scale. Thus t h e   f i n a l   r e s u l t  of th i s   t echnique  was a 

p l o t  of relative  exposure  versus  wavelength - a re la t ive   exposure   p rof i le .  

Examples a r e   g i v e n   l a t e r   i n   t h i s   r e p o r t .  

Instrument  Function 

The r e l a t i o n  between the  exposure  profilg.   discussed  above  and  the  spectral  

in tens i ty   p rof i le   emi t ted   by   the  plasma i s  descr ibed  by. the  instrument   funct ion.  

The spec t r a l   f ea tu re s   o f   t he  emergent i n t e n s i t y  were  broadened  both i n   t h e  

spectrograph  i tself   s ince a t  bes t   the   foca l   p lane   conta ins  a series  of  over- 

lapping monochromatic  images  of the  entrance s l i t  and in   the  microdensi to-  

metric  scanning  process where again  another s l i t  of f i n i t e   w i d t h  was employed. 

Suppose tha t   the   en t rance  s l i t  (a rea  A ) w a s  uniformly  i r radiated  by a steady 

i n t e n s i t y  I ( X  ) from a monochromatic  source a t  wavelength h*. Assuming 

that   the   grat ing  represents   the  l imit ing  aper ture ,   the   spectrograph  subtends 

a sol id   angle  A/f2  where A i s  the   g ra t ing   a rea   and  f i s  the   s l i t - t o -  

grat ing  dis tance. t  Thus the  product I ( h * )  A A/f2 represents   the   ra te  a t  

which  monochromatic energy  enters  the  spectrograph  and of t h i s  a f r ac t ion  

~ ( h  ) reaches   the   foca l   p lane   in   f i r s t -order .   This   energy  i s  d i s t r ibu ted  

along  the  focal   p lane  in  a ye t  unknown manner,  however t h e   i n t e g r a l  of the  

focal   p lane  heat   f lux  q(h)  must equal  the  incoming  rate , hence 

* S 

S 

* 

Ah 

tThe presence  of  collimating  lenses or mirrors   compl ica tes   th i s   def in i t ion   bu t  
should  not  cause  difficulty by not ing  that   the   expression  represents   the  sol id  
angle  that  the  instrument  subtends a t  the  entrance s l i t .  
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where  h i s  the  height   of   the   focal   p lane,  RLD t he   r ec ip roca l   l i nea r  

dispersion,  and Ah the wavelength  increment  over  which q ( A )  i s  nonzero. 

(It i s  convenient to   express   l engths   a long   the   foca l   p lane   in  terms of wave- 

lengths  by  the  expression dh = RLD dx). 

Now i f  a spectrogram  were  taken of. this monochromatic i r r ad ia t ion ,   t he   r e su l t -  

an t   re la t ive   exposure   p rof i le  i s  def ined  to   be  the  instrument   funct ion,  

F(h-h ) e (h ) / e (h* ) ,  where e (h )  i s  the  spectral   exposure a t  wavelength 

h and i s  normalized t o  the maximum value  e(h*) . The instrument  function 

for   th i s   exper iment  i s  shown by  Fig. 1. It w a s  measured a t  three  wavelengths 

using  the  reference  mercury  and neon spectra   a long  the edge  of  an ac tua l   shot  

spectrogram  together w i t h  H-D curves  obtained  from  nearby  spectral   features.  

The p a r t i c u l a r   l i n e s  were selected  because  they were weak and  the  resul tant  

film dens i t i e s  were comparable t o  that of  the  plasma  spectrum.  Bright  refer- 

ence l ines   could   eas i ly  become grossly  overexposed  and  lead  to  broadening  by 

film halat ion.  It i s  noted  that   the   values  a t  each  of  the  three  wavelengths 

a re   qu i t e  similar and  hence  the  instrument  function w a s  not  dependent on wave- 

length.  Close  scrutiny shows that   the   broadest   funct ion was obtained  from 

the  reddest   l ine  which  should  be  expected  s ince  diffract ion  effects   are   least  

negl ig ib le  a t  long  wavelengths. 

* 

Since   d i f f rac t ion   e f fec ts   should   be  small because  of  the  relatively wide 

entrance s l i t  employed, the  instrument  function would be  expected t o  resemble 

the  result   of  scanning a geometric image of  the 50 )L entrance s l i t  with a 

25 p microdensitometer sl i t ;  i .e.  a t r iangular   func t ion   wi th  a base  of  100 p 

or  1.12 A. S ince   the   ac tua l   func t ion  w a s  t rapezoidal   with a sl ightly  narrower 

base,   the  actual  microdensitometer s l i t  was probably  sl ightly  smaller (- 22 p ) .  

More important is  the  elimination of other   types of  broadening phenomena such 

as improper  focus,   optical   aberrations,   etc.  This p r e d i c t a b i l i t y  of the 

instrument  function means t h a t   t h e  monochromatic  energy was uniformly distri- 

buted  over  the  geometric image of  the  entrance s l i t  in   the   foca l   p lane .   This  

w i l l  be  important  in  the  polychromator  discussion  which w i l l  follow  shortly.  
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The equat ion  re la t ing  the  absolute   exposure a t  a wavelength X r e s u l t i n g  

from t h e  steady monochromatic i r r a d i a t i o n  of the  entrance s l i t  a t  a wavelength 

A* i s  obtained  from Eq. (1) by introducing  an  exposure time t and  the 

def ini t ion  of   the  instrument   funct ion  with  the  resul t  

e (h )  = - T(X*) t  I(h*)F(") 
f2  J F(L"*)dX 

- 
AA 

For a stigmafic  instrument  with  unity  magnification, the f a c t o r  As/h becomes 

W, the   phys ica l  width of  the  entrance s l i t .  

The extension  of t h i s  concept t o  non-monochromatic i n t e n s i t i e s  i s  s t ra ight -  

forward. Any s p e c t r a l   i n t e n s i t y  Ih(X) can be broken i n t o  a series of 

"monochromatic" l ines  by  multiplying  by a d i f f e r e n t i a l  wavelength  increment 
dh  and   t r ea t ing   each   i nc remen ta l   l i ne   i n   t he  above manner. The r e su l t an t  

exposure a t  any  wavelength i s  the sum of a l l  possible  contributions  and i s  

[ F(X-X')dh' 

Here the  t ransmit tance ~ ( 1 )  was assumed to remain constant  over the ins t ru-  

ment function. T h i s  equation i s  generalized  by  invoking  the well-known 

p r i n c i p l e   t h a t  the in t ens i ty   o f  a source  cannot be increased  by  optics.  

Thus the i n t e n s i t y   i n  the above equation i s  t ha t  emitted  by a source  provided 

t h a t  (1) the  transmittance  includes that of  the o p t i c a l  system  and (2)  t he  

grat ing  and  the s l i t  remain the l imi t ing   aper tures .  

The above equation re la tes  the   spec t r a l   i n t ens i ty  emergent  from the plasma 

t o  the absolute   spectral   exposure.  The techniques  of homochromatic  photo- 

m e t r y  y i e ld   r e l a t ive   spec t r a l   exposure   p ro f i l e s .  These a re   expressed   in  

terms of  the  instrument  function  by  normalizing the above equation  with 

r e s p e c t   t o  a peak  exposure e ( h o ) .  Since it was shown that   the   instrument  

funct ion w a s  independent of the absolute  wavelength, Eq. (3)  becomes: 

11 



J Ah 

If changes i n   t h e   s p e c t r a l   i n t e n s i t y  

are neglected,   th is   equat ion  reduces 

over  the  width  of  the  instrument  function 

t o  

which i s  to   s ay   t ha t   t he   r e l a t ive   exposure   p ro f i l e  i s  e q u a l   t o   t h e  re la t ive 

spec t ra l   in tens i ty   p rof i le   p rovided   tha t   the   ins t rument   func t ion  i s  negl ig ib ly  

narrow. 

In   the  preceding  discussion it w a s  t a c i t l y  assumed t h a t   t h e  plasma i n t e n s i t y  

remained  constant  throughout  the  exposure time. The constancy w a s  v e r i f i e d  

on each  shot  by a photoelectr ic   monitor  of the  zero-order   l ight   in   the  spectro-  

graph  and  also  by  the  simultaneous  signals  from  the  various  polychromator 

channels. Examples of t h e s e   t r a c e s  w i l l  be  presented la ter .  

Spectrograph  Optical System . and  Rapid-Closing  Shutter " - - 

The spectrograph w a s  coupled t o  the shock tube  by  the  optical   system shown 

i n  Fig. 2. This  optical   system was designed  with two requirements i n  mind: 

f i r s t ,   t h e   a c c e p t e d  beam had to   be  reasonably  narrow  over   the  ful l  30 cm dia- 

meter of t he  shock tube   t o   avo id  viewing the  end wall and  interface.  Secondly, 

the  entrance s l i t  (or, more prec ise ly ,   the   s tep  wedge) had to   be  uniformly 

i r r a d i a t e d  so that   the   technique  of  homochromatic  photometry  would be val id .  

This   l a t te r   requi rement  w a s  m e t  by  using  the 10 ern f.1. l e n s  ( re f .  Fig. 2 )  t o  

focus  an image of  the  entrance s l i t  on the  1 4  cm f.1.  l ens .   S ince   t h i s  l a t t e r  

l ens  w a s  uniformly irradiated by   t he   r e f l ec t ed  shock  plasma, then so was the  

entrance s l i t .  The accepted beam w a s  made narrow  by  employing the   cy l ind r i ca l  

l ens  a t  s l i g h t l y  more than a foca l   l eng th  away from t h e  14 cm f.1. lens.  The 

center l ine   o f   the  beam was located 7 mm from the  end wall. 
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This   op t i ca l  system  used  ordinary  fused  quartz  lenses  throughout  and  trans- 

mitted down t o  a t  least 2500 A ( t h i s  w a s  probably  the film cut-off  caused 

by  gelat in   absorpt ion) .  It was not  achromatic  and  hence w a s  focused   i n   t he  

green (- 5500 A) as a compromise over   the  vis ible   region.  It d id  go out  of 

f o c u s   i n   t h e   u l t r a v i o l e t   b u t  this w a s  of l i t t l e  consequence s ince   t h i s   r eg ion  

was used  for  survey  purposes  only. The f i e ld   and   ape r tu re   s tops  were placed 

a t  images  of the   g ra t ing   and  s l i t  to   p reven t   excess   l i gh t  from en te r ing   t he  

spectrograph  and  causing  possible  scattered  l ight  problems. These s tops 

were s l i g h t l y   l a r g e r   t h a n   t h e   s i z e  of t h e   v i s i b l e  images so that they were 

not   l imi t ing   aper tures .  The spectrograph was f u l l y   i l l u m i n a t e d   i n  the v i s i b l e  

r eg ion   by   t h i s   op t i ca l  system. 

In  pract ice   the  spectrograph was l e f t  open  from several   seconds  pr ior   to   each 

shot   un t i l   about  30 p s e c   a f t e r   t h e   r e f l e c t e d  shock  passed  through  the  f ie ld   of  

view. The exposure  from  the  ambient  light  and  the  incident  shock w a s  negl ig ib le  

i n  comparison t o   t h a t  from the  reflected shock  plasma. Thus the   shu t t e r ing  re- 

quirements were f o r  a rapid-closing,  capping-type  shutter. 

The concept of t h i s   s h u t t e r  was obtained from the  ar t ic le   by  Wurster4  a l though 

t h e   f i n a l  design was somewhat d i f f e ren t .   Bas i ca l ly   t he  shock wave and/or  debris 

from an  exploding  wire are used t o  bend a f l a p   o f  metal f o i l  through 90 and 

hence  cover  an  aperture.  Figure 3 conta ins   severa l   ske tches   to  show how the 

wire was mounted and how the e f f e c t s  of the  explosion were directed  toward  the 

f l ap .  The entire  assembly shown was mounted i n  a brass   case 75 mm diameter by 

40 mm thick.  The f o i l  was ordinary  "Super  Strength  Alcoa Wrap" which had a 

thickness  of 0.7 m i l .  The 3 m i l  diameter  by 15  mm long  copper wire was 

exploded  by  switching a 4 pfd  capacitor  charged  to  about 3.3 kV v i a  a 5C22 

thyratron  tube.  The shu t t e r  would t y p i c a l l y   c l o s e   i n  5 psec  with  closure 

occurring  about 35 psec a f t e r  a t r i gge r   pu l se  was sen t   t o   t he   t hy ra t ron   g r id .  

The i n i t i a l   f i r i n g  of   the  thyratron  caused  an  e lectromagnet ic   dis turbance  in  

the  other  instrumentation.  Therefore  the  t iming was such   tha t   the   thyra t ron  

was t r iggered   before   the   re f lec ted  shock  reached  the f i e l d  of view o f   t h i s  

instrumentation  and hence this   dis turbance  occurred  and was over  before  any 

r e f l e c t e d  shock  information w a s  recorded. 

0 
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The ac t ion  of t h e   s h u t t e r  w a s  recorded for each  shot   by  the  photoelectr ic  

monitor of the  spectrograph  zero-order   l ight .  Thus the  exposure  time  and 

the  temporal  behavior  of  the  radiation  during  the  exposure were known. 

Examples of t h i s   mon i to r  w i l l  be  given later. No rad ia t ion   emi t ted   by   the  

shu t t e r  w a s  discernable  on any  spectrogram  and  this i s  probably  explained  by 

the  physical   locat ion  of   the  shut ter  components; the  exploding wire i s  sur- 

rounded  by  the  wire  cavity  unti l   the  f lap  opens  and  hence  the  shutter  closes.  

A l l  the   spectroscopic  work was done with a first-order  spectrum. The higher- 

order   spectra  were blocked  by  placing a s t r i p  of Rohm and Hass Type I1 W A  

Plexiglas  along  the  focal  plane  from 3800 A t o  beyond 7000 A. This   mater ia l  

i s  opaque  below 3365 A and  transmits  well   above 3460 A. Thus the  combination 

of quartz  lenses  and  Plexiglas  cleared  the  f irst-order  spectrum  to  about 6800 

A. A Wratten #8 (K2) f i l t e r  was used   occas iona l ly   to   c lear   to   even   longer  

wavelengths,  but this   appeared  to   cause  interference  problems when used  near 

the  focal  plane  and,  since  the  f i lm  sensit ivity  dropped  sharply above  about 

6900 A, t h i s   f i l t e r  was seldom  used. 

Spectrograph  Film  and ~~ Exposure -~ 

The film  used  throughout  the  experiment was Kodak 2475 Recording  Film.  This 

i s  an  extremely  high  speed (ASA 1000)  panchromatic  film  with  extended  red 

sens i t i v i ty .  It was developed  for 5 minutes i n  room-temperature DK-50 follow- 

ing  the  manufacturer 's  recommendation.  Unfortunately  high  speed  film i s  grainy 

and 2475 f i lm  i s  r a t ed  as a coarse-grained  film.  Attempts t o  use a slower, 

f iner -gra ined   f i lm (Kodak 2496 RAR f i lm)  met with no success  because  of  in- 

s u f f i c i e n t   l i g h t .  

Although  the  spectrograph was used t o  ob ta in   re la t ive   ra ther   than   absolu te  

exposures,  inevitably one wishes t o  work  on an  approximately  absolute  basis 

i f   on ly   to   cons ider   exposure   de ta i l s .  The necessary  equation i s  obtained 

from Eq. (3)  by  neglect ing  the  effect  of the  instrument  function  with  the 

r e s u l t  
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For t h e  JACO 1.5 m spectrograph  with a 50 p sl i t ,  the bracke ted   fac tor  i s  

5.4 x lom8 p-s r  (A = 40 x 54 mm , W = 50 p, RLD = 11.2 A / m ,  f = 1.5 m). 2 

The transmission  of  the  spectrograph w a s  obtained  by  i l luminat ing  the  entrance 

s l i t  with monochromatic l ight  obtained  from a monochromator through a system 

of lenses   and  aper tures  w i t h  a l a r g e r  f/number ( i . e .  a smaller so l id   ang le )  

than that of the spectrograph. Thus the r a t i o  of   the  l ight   reaching  the 

foca l   p l ane   t o   t ha t  measured  behind  the  entrance s l i t  gave the  transmission 

( f o r   f i r s t - o r d e r )  of the  spectrograph.  This w a s  measured with a l i n e a r  photo- 

mul t ip l ie r   tube   and   the   resu l t  w a s  that the transmission  reached a maximum 

value of 60% a t  3500 A and  dropped  steadily  to  about 30% a t  7000 A. The 

transmission  of  the  optical   system was determined  by  back-lighting the spectro- 

graph  and  determining  the  ratio of t h e   l i g h t  emergent  from the  las t  l e n s   t o  

tha t  emerging  from the  entrance s l i t .  T h i s   r a t i o  w a s  about 50% a t  a l l  wave- 

lengths.  The product  of  these two  numbers thus   y ie lds  the transmission re- 

qu i r ed   i n  the above  equation. 

To measure t h e   s e n s i t i v i t y  of t h e  Kodak 2475 Recording  Film, a 0.16 sec 

exposure w a s  taken of a c a l i b r a t e d   t u n g s t e n   s t r i p  lamp - a source of known 

in t ens i ty .  The resultant  spectrogram w a s  densitometered a t  a number of wave- 

l e n g t h s   t o   o b t a i n  the H-D curves which, i n  t h i s  case, were used   t o   y i e ld   t he  

relative exposure  necessary  to   obtain a densi ty   of  0.3 above  fog. The absolute  

value  of  the 100% exposure wits calculated  f rom  the above  equation  using the 

known lamp in tens i ty   and   the  measured  transmission. The r e s u l t s  are shown on 

Fig. 4 together   with  the Kodak cu rves   fo r  t h i s  and two other   f i lms.  As can 

be seen, the data poin ts   agree   qu i te  wel l  w i t h  the  manufacturer 's   information 

and a log   s ens i t i v i ty   o f  2 i s  t y p i c a l   f o r  2475 film. Whether t h i s   v a l u e  of 

f i l m   s e n s i t i v i t y  i s  v a l i d   f o r  a calculat ion  of   an  intensi ty   f rom  the re- 

f l e c t e d  shock  plasma a t  a typical  exposure time of 30 psec  depends on the  

reciprocity  behavior  of the fi lm. The r ec ip roc i ty  l a w  states t h a t   t h e   f i l m  
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s e n s i t i v i t y  i s  dependent  only  on  the  product  of  the  exposure rate and  time 

and i s  independent   of   e i ther   factor   taken  separately.  Milne  and  Eyer5  could 

f i n d  no r e c i p r o c i t y   f a i l u r e   f o r  Kodak  Royal-X Pan Recording  Film (a type 

similar t o  2475) a t  exposures  from low4 t o  10- sec so the  neglect  of 

r ec ip roc i ty   f a i lu re   fo r   t h i s   ca l cu la t ion   appea r s   t o  be val id .  

8 
* 

Thus we assume that an  exposure  of 10 erg/cm2 i s  r equ i r ed   fo r  a dens i ty  of -2 

0.3 above  fog (a minimal  exposure).  Using  the  above  equation  and  assuming a 
transmittance of 20%, the   in tens i ty   requi red   for  a 30 psec  exposure i s  I = 3100 
W/cm -sr-p.  For v i s ib l e   r ad ia t ion  and a 30 cm pa th length   in   the   re f lec ted  

shock  plasmas of this experiment, th is  s p e c t r a l   i n t e n s i t y  i s  t y p i c a l  of t he  

rad ia t ion  a t  l i n e   c e n t e r s  from  an 11,000 K plasma  and  continuum  radiation 

from  plasmas  above  12,500 K. 

2 

Thus it i s  clear   that   the   experiment   did  not   enjoy  excess   l ight   and  the  f iner-  

gra ined   bu t   l ess -sens i t ive   (by   fac tor  of 10) Kodak 2496 Film  could  not  be 

employed. Recently  another  extremely fast Kodak f i lm  has become ava i lab le  - 
Kodak 2485  High Speed  Recording  Film  (formerly Type so-166) - and  promises t o  

be  nearly 10 t imes   fas te r   than  2475 a t  4000 A. It was not  used i n  t h i s  experi- 

ment, although it w i l l  p robably   be   t r ied   in   the   fu ture .   In   an   a t tempt   to  

capture   the  near- infrared  region,  a short   length of Kodak High Speed Inf ra red  

Film was placed i n  the  7000-7800 A port ion of the  spectrograph camera. This  

met w i t h  no success   (negl igible   densi ty   change)   and  the  cause  appears   to   be 

r ec ip roc i ty   f a i lu re   i n   t he   r ed - sens i t i ve   emul s ion   s ince  good exposures were 

obtained  from  the  standard lamp. However quant i ta t ive  work needs t o  be done 

before  definite  statements  can  be made. 

Polychromator 

The polychromator w a s  used t o  measure photoe lec t r ica l ly   the   absolu te   in tens i -  

t i e s  averaged  over 5-50 A spec t r a l   i n t e rva l s  a t  selected  wavelengths  in  the 

v i s i b l e  spectrum. A s  mentioned  earlier,   the  basic  instrument was another 

JACO 1.5 m Wadsworth Spectrograph. A la rge  (1 x 1 . 5  x 2 f t) ,  l i g h t - t i g h t  box 

w a s  added a t  t he  camera  end so that  phototubes  could  be  conveniently  located 

* 
Kodak l i t e r a t u r e   f o r   t h e  2475 film (Pamphlet No. P-95) ind ica t e s   t ha t  
deviations  between SO-4 sec  and 0.16 sec   a re   negl ig ib ly  small (- 10%). 
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behind  the  focal  plane.  The polychromator w a s  coupled t o   t h e  shock  tube  by 

the  opt ical   system shown on Fig. 5. Again the  requirement w a s  for a narrow 

beam along  the  tube  diameter   but   in   addi t ion  the  system  had  to  form a small 

image of  the  entrance s l i t  i n   t h e   c e n t e r  of the  tube  for   cal ibrat ion  purposes .  

The overal l   length  of   the  system w a s  much longer  than that of  the  spectrograph 

(Fig. 2) because of physical   space  l imitations.  Glass lenses  were used  because 

r ad ia t ion  below 3500 A was of no in t e re s t   he re .  The polychromator f i e l d  of 

view was d i r e c t l y   o p p o s i t e   t o  that of the  spectrograph so tha t   bo th   ins t ru-  

ments  viewed the  same gas  sample,  but  from  different  ends. 

Five,   f ixed-type  exi t  s l i t s  were mounted along  the  focal   p lane.  So t h a t   t h e  

photocathode  of  each  photomultiplier  tube would be  uniformly  irradiated  regard- 

l e s s  of the  spectral   energy  dis t r ibut ion  across   each  exi t  slit ,  the  system 

sketched  below m s  employed. 

Focal  plane 

I /“Exit  

1P28 Photocathode 7 

23 mm dim 
glass  achromat 

Top  view of component  arrangement  behind  focal 
plane of polychromator . 

Here l i g h t  emergent  from  each s l i t  was col lec ted  by the  17 cm f.1. achromats 

which  formed l /8-s ize  images  of  the  grating on the  photocathodes of 1 ~ 2 8  
photomult ipl ier   tubes .   Corning  glass   color   f i l ters  were  used t o   b l o c k  
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Fig. 5 Optical System f o r  Polychromator 



sca t te red   l igh t   and  ( i n  one instance)  second-order  spectra.  The open spaces 

between  each e x i t  s l i t  were  covered  with  black  photographic  tape so that the  

o n l y   l i g h t   e n t e r i n g   t h e   l i g h t - t i g h t  box  had t o  come through  an  exit  s l i t .  

The phototubes were coll imated as shown to   e l imina te   poss ib l e   c ros s  talk. 

The phototubes  were  culled  from a large  supply by se lec t ing   those  which 

exh ib i t ed   t he   bes t   s igna l /no i se   r a t io s  a t  the  wavelengths of i n t e r e s t .  

The factors   governing  the  select ion of the  center  wavelength  and  spectral  

bandpass  for  each  exit  s l i t  w i l l  be   discussed  la ter   and  here   these  values  

a r e  assumed t o  be  given. The technique  used t o   l o c a t e   t h e s e  s l i t s  was t o  

have a second  alignment s l i t  c u t   i n   t h e  same piece  of  metal. A nearby, 

s t rong   re ference   l ine  from the  spectra   of  Hg, A, He,  or Ne was s e l e c t e d   f o r  

this  al ignment.   This  l ine,   together  with  the  above  values  and  the measured 

(photographica l ly)   rec iproca l   l inear   d i spers ion  gave the  necessary  input   to  

design an e x i t  s l i t  similar to   t ha t   ske t ched  below. 

Alignm 
slit (- 

.ent 
8 mil )- 

certain 

- Measu 
slit 

1 

distance 

rement 

Sketch of fixed  exit slit used  in  polychromator 

The e x i t  s l i t s  were mil led from  0.010-inch  hard aluminum sheets  about 1 .5  inches 

square. The exact  widths  and  separation were determined  by  measurement on an 

o p t i c a l  comparator. 

The s l i t s  were  clamped along  the  focal  plane  by  screws  and  washers  to  permit 

adjustment.  Alignment w a s  accomplished  by  locating  the  appropriate  reference 

l i n e   i n   t h e   f i e l d  of a short-focus  telescope  and  then  manipulating  the  exit  

s l i t  u n t i l   t h i s   r e f e r e n c e   l i n e  w a s  i n   t h e   c e n t e r  of the  alignment s l i t  when 

t h e   e x i t  s l i t  was locked  t ight .  With a 50 p entrance s l i t ,  the  width  of   this  

re ference   l ine  was 50 p or 2 m i l .  An easily  observable  misalignment would be 
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2 mil which i s  equ iva len t   t o  0.5 A i n  wavelength  along  the  focal  plane. Thus 

the e x i t  s l i ts  could  be  located i n  the  above manner t o   b e t t e r   t h a n  2 0.5 A. 

Polychromator  Calibration  and  Analysis 

The polychromator  system w a s  cal ibrated  by  replacing the unknown re f l ec t ed  

shock  plasma with a source  of known spec t ra l   in tens i ty .   This  was an  Eppley 

Standard  of  Spectral  Radiance - a General   Electr ic  30A/T24/7 tungsten  ribbon 

fi lament lamp ca l ib ra t ed  by Eppley  from 0.25 t o  0.75 p a t  35 amps. I n  

p rac t i ce  a similar lamp was used as a working  standard. The lamps  were 

placed a t  the  center   of   the  shock  tube where the s l i t  image w a s  comfortably 

smaller  than  the  f i lament.  Thus the  system was cal ibrated  through  the same 

lenses ,  windows, e t c . ,  as used f o r  each  shot.  This  did mean t h a t   t h e  C a l i -  

b r a t ion  had t o  be  performed  hours  before  each  shot - before  the  tube was 

closed  and  evacuated. However w i t h  one except ion,   the   cal ibrat ions  did 

not change s ign i f i can t ly  from  day t o  day so t h i s  w a s  not a serious  disadvantage. 

To provide a pe r iod ic   ca l ib ra t ion   l i gh t   s igna l ,  a 3600 rpm chopper w a s  placed 

immediately i n   f r o n t  of  the  entrance s l i t .  The chopper  blade was 5.2 inch 

diameter  and  contained a s ingle  s l i t  0.050 inch  wide.  This  yielded a f l a t -  

topped 50 psec  l ight  pulse  every 1/60 sec  and  hence  provided a f a i r  simula- 

t i o n  of the  t ime  behavior   of   the   t ransient   l ight   pulse  from the   re f lec ted  

shock  region. 

The amplitudes of t he  plasma l igh t   pu l se s  were  from 50-5000 t imes  greater  

than that of the  standard lamp and thus  t h e   l i n e a r i t y  of the  photomultiplier 

tubes w a s  an  important  consideration.  Linearity was establ ished  over   the 

full range  by  replacing  the  standard lamp w i t h  a Xenon f lash  tube  and  inser t -  

i ng   va r ious   neu t r a l   dens i ty   f i l t e r s   i n to   t he   op t i ca l   pa th .  The amplitude 

d i s p a r i t y  w a s  s l ight ly   reduced by  opening  the  polychromator  entrance s l i t  

t o  300 p dur ing   ca l ibra t ion   ( the  s l i t  image remained suff ic ient ly   narrow) 

which  gave a s ixfold  increase  in   the  energy  received  by  each  phototube.  The 

principal  advantage of t h i s  w a s  t o  improve the   s igna l /no ise   ra t io  of t he   ca l i -  

b ra t ion   s igna ls .  The exac t   fac tor  w a s  measured  by  using  the  zero-order  light 

and it appeared  to   hold  for  a l l  the  phototubes. 
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The equat ion   for   the   ra te  a t  which  energy  passes  through  an  exit s l i t  on the  

polychromator  focal  plane i s  readi ly   der ived  by  rewri t ing Eq. (3) in   terms of 

a focal   p lane  heat   f lux.  However fo r   t h i s   app l i ca t ion   t he   i n s t rumen t   func t ion  

describes  the  appearance of a monochromatically-irradiated  entrance s l i t  i n  

the  focal   p lane.  From t h e   e a r l i e r   r e s u l t s ,   t h i s  i s  merely  the  geometric image 

of the  entrance s l i t  and  thus  the  focal   p lane  heat   f lux becomes 

A" 2 

This i s  the   hea t   f lux  a t  a pa r t i cu la r   po in t  on the  focal   p lane  and it receives  

contr ibut ions from  wavelengths h 2 W'/2 where W' i s  the  spectral   width  of 

the  entrance s l i t .  

The contr ibut ion from each  wavelength i s  obta ined   by   d i f fe ren t ia t ing   the  above 

equation whereupon 

Here dq(h)   represents   the  incremental   heat   f lux  resul t ing from the  mono- 

chromatic   intensi ty   Ih(h)dh.   This   f lux i s  uniform  over  the  entrance s l i t  

image which occupies a dis tance W or s p e c t r a l   i n t e r v a l  W' = W(RLD) along 

the  focal   p lane.  The d i s t r ibu t ion   o f   t hese   d i f f e ren t i a l   hea t   f l uxes  i s  best 

shown graphically . The sketch on the  next  page ind ica t e s  how an  edge of the  

e x i t  s l i t  masks a port ion of the  images r e s u l t i n g  from  wavelengths  near  that 

of t h e   e x i t  s l i t  edge. The s i t u a t i o n   f o r   t h e   o t h e r  edge  would,  of  course, 

be similar. This   sketch  considers   intervals  dh  = W'/4 f o r   c l a r i t y .  
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W ’  

If the  edge of an 
exit slit were 

Only these  fluxes 

Schematic  representation  showing  passage of 
differential  fluxes by an  exit slit edge. 

To ob ta in   the  rate a t  which  energy  passes  through a n  e x i t  s l i t ,  the  areas 

have to be modified t o  account  for t h i s  masking effect .   This  i s  accomplished 

by  the  weighting  function R(X) sketched below. 

-1 i I+- * I Spectral  width of entrance  slit 

h-4 Spectral  width of - exit slit, Ah 

Exit slit weighting  function. 

Now t h e   d i f f e r e n t i a l  rate for the  energy  passed by a n   e x i t  s l i t  i s  given b y  

de ( X )  = dq(A) AsR(A) and,  by  integrating  over  the  nonzero limits of R( A ) ,  

t h e   t o t a l   r a t e  E i s  



J 

Ah +w 
The weighting  function  only  involves  the  intensit ies  near  the e x i b s l i t  edges 

and  these  edges were  placed in   spec t r a l   r eg ions  where the   va r i a t ions  of the  

spectral   in tensi ty   with  wavelength were small. By neglect ing  these small varia- 

t ions,   the  weighting  function R ( h )  can  be  ''squared up'' and  fur ther   by assum- 

ing  the  t ransmission  to   be  constant   over   the  ent i re   exi t  s l i t  width,  the  above 

equat ion  can  be  s implif ied  to   yield 

A X  
lo+ 2 

During  the  polychromator  calibration  the  source was a standard lamp whose 

spectral  intensity  varied  slowly  and  smoothly  with  wavelength. By choosing 

a mean value  the  following  operational  equations  for  the  polychromator can 

be  derived  from Eq. ( 9 )  : 

Here IA(s td .  lamp) i s  the  mean s p e c t r a l   i n t e n s i t y  of the  standard lamp and 

'plasma/'std. lamp 
obtained  from a given  photomultiplier  tube. Thus IAh i s  the  mean spec t r a l  

i n t e n s i t y  of t he  plasma  averaged  over  the  spectral  width of t h e   e x i t  s l i t  as 

given by the   t h i rd   equa l i ty .  The fou r th   equa l i ty  was obtained  by  inser t ing a 

normalizing  constant L o  t o  make the  integrand  resemble  the  re la t ive  spectral  

i n t e n s i t y   p r o f i l e  as obtained  by  the  spectrographic  techniques  discussed 

e a r l i e r .  The above  equations  represent  the limit of   the   s impl i f ica t ion  of t h e  

polychromator resu l t s   wi thout   fur ther  knowledge concerning  the  spectral   nature  

of   the plasma rad ia t ion .  

i s  t h e   r a t i o  of the  shot  signal t o   t h e   c a l i b r a t i o n   s i g n a l  
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Combination  of Results from  Spectrograph  and  Polychromator 

The spectrographic , resul ts   provide this detailed  spectral   information  and 

can  be  used t o   p e r f o m   t h e   i n t e g r a t i o n   r e q u i r e d   b y   t h e  last  e q u a l i t y   i n  Eq. 

( lo) .  For the  moment, changes in   t he   spec t r a l   i n t ens i ty   ove r   €he .wid th   o f  

the  instrument  function w i l l  be  neglected so tha t   the   re la t ive   exposure  

prof i le   can  be  considered  equivalent   to   the  re la t ive  spectral   in tensi ty  

prof i le .  Thus the   pos i t i on   o f   t he   ex i t  s l i t s  can  be drawn on t h e   p r o f i l e  

and,  by  planimetry,   an  average  relative  spectral   intensity (r) over A 1  can 

be  obtained as sketched below. 

Relative  intensity  profile 
(spectrograph) 

Spectral  location of 
polychromator exit slit 

Sketch  indicating  the  physical  meaning of 
the  average  relative  spectral  intensity. 

T h i s  operation  yields,  from the  spectrographic   resul t :  

and  combining 

y ie lds  

this   with  the  appropriate   polychromatic   resul t  from Eq. (10) 

This i s  an  important  equation  because it provides   absolute   cal ibrat ions for 
t h e   r e l a t i v e   s p e c t r a l   i n t e n s i t y   p r o f i l e s  from the  spectrograph  without  having 

t o  perform  quantitative  photometry. 
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In   th i s   chapter   the   equat ions   needed   to   ca lcu la te  a plasma temperature  from 

the  polychromatic  and  spectrographic  results are der ived  together   with  the 

appropriate   error   analyses .  

General Error Analysis 

Bas ica l ly   the  plasma  temperature was ca lcu la ted  from t h e  measured  value  of a 

temperature-dependent  radiative  quantity M. Such a quant i ty ,   emit ted by a 

steady  isothermal  plasma, w i l l  general ly  depend on the  two  thermodynamic 

var iab les  which def ine   the   s ta te  of t he  plasma toge ther   wi th   cer ta in   phys ica l  

constants. By selecting  temperature  and  pressure as the  thermodynamic var ia-  

bles  and  denoting  the lumped physical   constants  as C,  t h i s   func t iona l   r e l a -  

tionship  can  be  expressed  by M = f(T,P,C). The t o t a l   d i f f e r e n t i a l  of t h i s  

r e l a t i o n  can  be written  in  the  following  nondimensional  form: 

dM P aMI  dP C aMI dC 

dT 
T 
- 

Here the   l e f t   s ide   represents   the   uncer ta in ty   in   the   ca lcu la ted   t empera ture  

while  the  numerator on the  r ight   contains   terms which descr ibe  the  uncertainty 

i n   t h e  measurement  of M i t s e l f   t o g e t h e r  w i t h  t h e   e f f e c t  of the   uncer ta in ty  

in   the  pressure  and  the lumped physical  constants.  The denominator w i l l  be 

cal led  the  temperature   sensi t ivi ty   and  c lear ly  it w i l l  mi t iga te   the   o ther  

u n c e r t a i n t i e s   i f  it i s  large.  

Thus the   se lec t ion  of the   quant i t ies  M used t o  determine  the  plasma  tempera- 

t u r e  depended i n   p a r t  on the   t empera ture   sens i t iv i ty .   This   in   tu rn  i s  a 

function of  temperature  and  can l i m i t  the   region of usefulness as w i l l  be 

demonstrated. For the  lower  plasma  temperatures  the  shape  and/or  the  total 

intensi ty   radiated  by  cer ta in   a tomic  l ines   and  mult iplets  were se lec ted  as 

su i t ab le   quan t i t i e s  . 
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Derivat ives  of  Plasma Propert ies-  

To evaluate  the  temperature  uncertainty  result ing  from  the measurement  of 

t h e s e   q u a n t i t i e s ,   c e r t a i n   p a r t i a l   d e r i v a t i v e s   o f   t h e  plasma proper t ies  w i l l  

be required. 

The Saha equation  and  the  equation  of state for   the  s ingly- ionized  region  of  

a neut ra l ,  monatomic (or ful ly   dissociated  polyatomic)  plasma of a s ingle  

specie   are:  

P = (2ne + nA) kT 

n e 
n + n  e A  

cy5 

where CY i s  the  degree  of  ionization, U+/U i s  t h e   r a t i o  of t h e   i o n   t o  

neu t r a l   e l ec t ron ic   pa r t i t i on ' func t ions ,  I i s  the  ionization  energy, 

A = 4.83 x l 0 l 5  and ne and nA a r e  the e l ec t ron  and neu t r a l  

p a r t i c l e   d e n s i t i e s .  These equations  are  given i n  Chap, 3 of Zel'dovich and 

Raizer. 6 

The r equ i s i t e   pa r t i a l   de r iva t ives   a r e   ob ta ined  from these  equations  and  can 

be  expressed as follows: 

T 1 5  
n a T  ( P  = -  CY (E+$ - 1 " 

A 

Since CY = f (T,P) ,   these  der ivat ives  are functions  of  temperature  and  pressure. 



While the  Saha equation i s  not s t r i c t l y   v a l i d   f o r  air ,  it i s  noted   tha t  i f  

U+/U = 0.77 and I = 13.8 e V  are used  in  Eqs. (14) and ( l 5 ) ,  t he   r e su l t an t  

values for the  degree  of  ionization are within 1% of the  values   calculated 

from the   da t a   i n   Tab le  A2 where a = 0.01 t o  0.5.  This i s  excellent  agreement 

for the  intended  purpose. Thus t h e  above p a r t i a l   d e r i v a t i v e s  were evaluated 

along  the  path of t h e   r e f l e c t e d  shock  Hugoniot s t a t e s  (ref. Table A2)  by 

using I = 13.8 eV and  the  tabular   values  of the  degree  of  ionization. The 

resu l t ing   curves   a re  shown in  Fig.  6 and w i l l  be  used in   the   d i scuss ions  

which  follow. The curves   apply   to   e i ther   n i t rogen  or oxygen  atoms  because 

of the  assumptions  involved. 

Radiant  Energy  Transport  Equations 

The bas ic   equa t ion   for   rad ia t ion   t ranspor t   in   an   i so thermal  plasma i s  

Ix = Bx 

where IA i s  the   spec i f i c   i n t ens i ty ,  6 the  pathlength,   and p h  t he   spec t r a l  

absorp t ion   coef f ic ien t  which contains   addi t ive  contr ibut ions from a l l  l i n e  

(Cpk) and  continuum (pi) rad ia t ion .  BA i s  the  Planck  function which, f o r  

wavelengths i n  microns, i s  given  by 

C 

4 
where C2 = 1.439 x l o  pK. 

Invert ing  the  basic   t ransport   equat ion (Eq. 19) y ie lds  

For l ine   rad ia t ion ,   the   in tegra ted   absorp t ion  i s  defined as 
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where p: now refers to   contr ibut ions  f rom a p a r t i c u l a r   l i n e  or mul t ip l e t  

only. For wavelengths i n  microns,   the  integrated  absorption is: 

where  n i s  the  number densi ty   of   the   emit t ing  specie   in   par t . /cm , i 'i 
the   par t i t ion   func t ion ,  g the  lower  state  degeneracy, f t he  f-number, 

and ea the  lower state energy. The last  three  parameters were taken  from 

t h e  NBS t a b l e s  whenever possible.  These equat ions,   together   with  the com- 

b ined   r e su l t s  from the  polychromator  and  spectrograph,  were  used  to  determine 

a temperature  from  the  measured  intensity of a p a r t i c u l a r   l i n e  or mul t ip l e t  

as out l ined  below. 

3 

7 

Thermometry of Line In t ens i ty  Measurements ~~ - 

The required  numerical work was done by a d i g i t a l  computer  code o r i g i n a l l y  

. wri t t en   t o   ana lyze   l i ne   r ad ia t ion   t ha t  was no t   op t i ca l ly   t h in .  However s ince 

it i s  val id   for   any  opaci ty ,  i t s  use became r o u t i n e   d e s p i t e   t h e   f a c t   t h a t  

simpler  expressions  can  be  writ ten when opac i ty   e f f ec t s   a r e   neg l ig ib l e .  

Basical ly   the  integrated  absorpt ion (Eq. 22) was computed  from experimental 

measurements  of a g iven   l ine  or mult ip le t .  Then th i s   va lue  was used t o  

determine a temperature  by  numerical  inversion  of Eq. (23). 

The per t inent   experimental   resul ts  were t h e   r e l a t i v e   i n t e n s i t y   p r o f i l e  from 

the  spectrograph  (see  sketch on p. 27) together  with  the  value of the  normal- 

i z i n g   i n t e n s i t y  as obtained from the  combined r e s u l t  from the  spectrograph 

and  polychromator (Eq. 12) .  This   experimental   prof i le   contains   contr ibut ions 

not  only  from  the  line or mult iplet   under   considerat ion  but   a lso from the  

continuum  and possibly  other   mult iplets .  These contr ibut ions must be  separated * 
and t h i s  becomes inc reas ing ly   d i f f i cu l t  a t  the  higher  temperatures.  

o f   th i s   separa t ion  w i l l  be  given in   the   next   chapter .  

* 
The continuum, as used  here, means an  unchanging  spectral   intensity 
could  very  well  include  the  underlying  wings  of  other  multiplets. 

Example s 
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For t h e  moment, consider   this   separat ion  accomplished  and  select  two  wave- 

lengths  Al and h2 on opposite  sides of a given  multiplet  where the  

spec t ra l   absorp t ion   coef f ic ien t   o f   the   mul t ip le t  i s  e f f ec t ive ly   ze ro  and 

where the  continuum  intensity (IA) can  be  determined.  Equations (21) and C 

(22) can now be combined t o   y i e l d  

A, 

where 

c 

$ = - $ 1 I n  [. - (-)(-)I 5 0  Ih  dh - pA C ( A  -A  ) 
BA = A 0  2 1  

Here spectral   changes  in  the  Planck  function,  continuum  intensity,   and 

normalizing  factor have  been  neglected. 

The computational scheme w a s  to   input   the   normal iz ing   fac tor  (Eq. 12), the  

r e l a t ive   i n t ens i ty   p ro f i l e ,   and  a f i r s t  estimate of the plasma  temperature 

which was used  to  evaluate  the  Planck  function. The computer calculated a 

value  for   the  integrated  absorpt ion (Eq. 24) u t i l i z i n g  Simpson's r u l e  and 

then,  by  iteration,  found  the  temperature that  s a t i s f i e d  Eq. (23). This  

temperature w a s  general ly   not   equal   to   the f i r s t  estimate,  so a second 

estimate w a s  made and this   procedure  cont inued  unt i l   the  two temperatures 

agreed. The printout  included  the  continuum  spectral   absorption  coefficient 

( p h )  and  the  peak  emissivity (I /B ) and  these  are  noteworthy  because  of  the 

consistency  checks  they  provide as discussed later.  These computations were 

performed on a t ime-   shar ing  digi ta l  computer (TYMSHARE) . 

C 
A 0  h 

Up t o  th i s  po in t   t he   e f f ec t s  of the  instrument   funct ion  and  the  exi t  s l i t  

weighting  function have  been t ac i t l y   neg lec t ed .  The e x i t  s l i t  weighting 

function  can be "squared up" (Eq. 9) without  introducing a s i g n i f i c a n t   e r r o r  

p rov ided   t he   spec t r a l   i n t ens i ty   d id   no t  change rap id ly  a t  t h e   e x i t  s l i t  edges. 

The s l i t s  were located so t h a t   t h i s  was genera l ly   t rue .  The e f fec t   o f   the  

instrument  function  can  be  assessed  by f irst  r e c a l l i n g  that broadening  does 

not  destroy  energy. Thus in   gene ra l   t he  main e f f e c t  of t r e a t i n g  a r e l a t i v e  

exposure  profile as a r e l a t i v e   i n t e n s i t y   p r o f i l e  i s  that the  normalizing 
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i n t e n s i t y  Iho (Eq. 12) i s  too  low. Th i s   e r ro r  i s  p a r t i a l l y   c a n c e l l e d   i n  

the  subsequent .   spectral   in tegrat ion  process   and it can  be shown that the re  

i s  no r e s u l t a n t   e r r o r  when the   r ad ia t ion  i s  opt ica l ly- th in .  When opaci ty  

e f f e c t s  become impor tan t ,   the   e r rors  do not  completely  cancel  but a t  t h e  same 

time, opaci ty   effects   are   concurrent   with  higher   temperatures ,   e lectron  densi-  

t i e s ,   and  hence  broader  lines whereupon the   ins t rument   func t ion   i t se l f  becomes 

less  important.  Thus i n  summary the  effects   of   the   instrument   funct ion  and 

e x i t  s l i t  weighting  function were negl ig ib le  when spec t ra l ly- in tegra ted  

quan t i t i e s  were  used as was the  case  in   this   thermometr ic   technique.  

Error   Analysis   for   Line  Intensi ty  Thermometry 

To obtain  analyt ic   expressions  for   the  temperature   uncertaint ies ,   the   radiat ion 

must  be  assumed t o  be   e i the r   op t i ca l ly - th in  or optical ly- thick.   Since  the 

experimental  conditions were more nea r ly   op t i ca l ly - th in  and  since it can  be 

shown that   the   opt ical ly- thick  case  yields   only  s l ight ly   greater   temperature  

e r rors ,   on ly   the   op t ica l ly- th in   case  w i l l  be t reated  here .  

The optically-thin  assumption (Ih << Bh o r  ph6 << 1) permi ts   the   in tegra t ion  

of Eq. (24)  by  the  expansion  ln(1-x) - x wi th   t he   r e su l t  : 

f 2  IXdh = 6Bh$ + I f (h2-h l )  (25) 
A 1 

The measured  quantity M i s  cons idered   to   be   the   in tegra ted   l ine   in tens i ty  

6Bh$. The continuum  contribution w i l l  be   t rea ted  as a constant  because i t s  

magnitude was not  used t o  determine a temperature   in   this   thermometr ic  

technique. 

Combining Eq. (23)  with  the  Planck  function (Eq. 20)   yields   the  integrated 

l i n e   i n t e n s i t y  
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where e i s  the  upper state energy.   Subst i tut ing  this   expression  into Eq. 

(13) and  performing  the  required  differentiation  yields  the  following  expres- 

s ion   fo r   t he   unce r t a in ty   i n   t he  measured  temperature: 

U 

dT 
T 
- .. 

T ani T 
" -"+- 
n i a T  I Ci dT kT 

The temperature  sensit ivity  of  this  technique i s  given  by  the  denominator 

which represents   the change  of the   exc i ted   s ta te   popula t ion  w i t h  temperature. 

For most v i s ib l e   t r ans i t i ons   o f  N I  or 01, the  upper  state  energy cU i s  

ab,out 13 eV.  The der iva t ive   o f   the   par t i t ion   func t ion  i s  small (m 0.5) and 

changes  slowly. However the  f i r s t  t e r m ,  representing  the change in   t he  

neu t r a l  number density,  i s  negative  and becomes large a t  the  higher  tempera- 

t u re s   ( r e f .   F ig .  6 ) .  Thus the  temperature   sensi t ivi ty   decreases   rapidly  a t  

the  higher  temperatures  and  the  result  of t h i s  w i l l  be  demonstrated  shortly. 

The f i r s t  term  in  the  numerator  describes  the  uncertainty  in  the  experimental  

measurement  of t he   i n t eg ra t ed   l i ne   i n t ens i ty  which, fo r   op t i ca l ly - th in  con- 

d i t ions ,  i s  given by Eq. (25).  However the  actual  determination i s  b e t t e r  

described  by  referring  again t o  the  sketch on p. 27. The polychromatic 

resul t   provides   the  absolute   value of the i n t e g r a l  of t he   spec t r a l   i n t ens i ty  

over  the  width of the e x i t  s l i t .  From  Eq. (lo), the   uncer ta in t ies  i n  t h i s  

value  stem  from  those  of  the  standard lamp i n t e n s i t y  (L 2$) ,  the  measurement 

of the  s tandard lamp signal   vol tage (3 3 % ) ,  and t h e  measurement of the plasma 

signal  voltage ( 2 .  5%) and when added  together,  give a to t a l   unce r t a in ty  of 

rt 10% to   the   po lychromat ic   resu l t .  

Then two correct ions were a p p l i e d   t o   t h i s   r e s u l t  and  both were derived  from 

t h e   r e l a t i v e   s p e c t r a l   i n t e n s i t y   p r o f i l e .   F i r s t   a n   a d d i t i v e   c o r r e c t i o n  w a s  

appl ied   to   account   for   the   l ine  wings cut   off   by  the  exi t  s l i t  and, for   the  

wide s l i t s  used  herein, th is  was a r e l a t i v e l y  minor correction. The second 

and more important  correction w a s  a subtract ion of t he  continuum contr ibut ion 
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and  th i s   involved  f i rs t  an estimate o f  the   apparent  continuum l e v e l  from t h e  

relative i n t e n s i t y   p r o f i l e .  Through experience  gained  during  the shape- 

f i t t i ng   p rocedures   d i scussed  next, t h i s  l eve l  could be p i cked   t o  +- 0.02 u n i t s  

of relative in tens i ty .   F ina l ly   devia t ions  between t h i s   r e l a t i v e   i n t e n s i t y  

leve l  and   the   ac tua l  plasma  emission  must be  considered. By d e f i n i t i o n   t h i s  

deviat ion i s  zero a t  I h / I h o  = 1.0 but  lower  values  involve  the H-D curve 

and   t he   a t t endan t   e f f ec t s   o f  film noise,  weak exposures,  and.the  assumptions 

of  homochromatic  photometry. Quant i ta t ive ly ,   these   e f fec ts  are described  by 

the  following  equation  derived  from  practical   experience: 

where the  l e f t  hand s ide   represents   the   devia t ions  between the   ac tua l  plasma 

emiss ion   and   the   re la t ive   in tens i ty   p rof i le .  

The e f fec t   o f   these  two cor rec t ions  was quantified  by  assuming a reasonable 

l i n e  shape  and e x i t  s l i t  width  and  various  continuum  levels. The r e s u l t s  

indicated  that   these  spectrographical ly-der ived  correct ions  to   the  polychromatic  

r e s u l t  added  another 2 10% uncertainty i f  t he  continuum level  was below 0 .5  

IA 0 and tha t   the   uncer ta in ty   rose   rap id ly  i f  t h e  continuum l e v e l  was higher. 

This l a t te r  behavior  occurs  because  the  process  of  subtracting  the continuum 

y ie lds  a r e s u l t   f o r   t h e   i n t e g r a t e d  l i n e  i n t e n s i t y  which i s  the   d i f f e rence  

between two la rge  numbers, each  of  which  has  an  associated  uncertainty. 

Thus t h e  f irst  term  in   the  numerator   of  Eq. (27) i s  estimated t o   b e  2 20% a t  

low continuum leve ls .  The second term contains a der iva t ive  which i s  near 

un i ty  ( re f .  Fig. 6 )  and  the  pressure i tself  which i s  cons idered   uncer ta in   to  

- + 10% since it was not  measured during  this   experiment .  The th i rd   t e rm 

rep resen t s   t he   unce r t a in ty   i n   t he  f-number  which f o r  NBS grade B lines' i s  

- + 10%. Hence the  numerator of Eq. (27) becomes 2 40% and, when divided  by 
a typ ica l   t empera ture   sens i t iv i ty  of 10 a t  12,000 K, i nd ica t e s  a temperature 

uncertainty of +. 4%. 



. 

A t  15,000 K, the   temperature   sensi t ivi ty   drops  to   about  4.5 which  would y i e l d  

a temperature  uncertainty of +- 9% even i f  the  continuum leve l   s tayed  below 

50% which, as w i l l  be shown later, it does  not. Hence the  thermometric 

technique of measuring  the  integrated  intensi ty   of  an N I  or 01 l i n e  i s  

fairly precise  f o r  temperatures up t o  about 13,000 K, b u t   t h i s   p r e c i s i o n  

i s  r a p i d l y   l o s t  a t  higher  temperatures  both  because of a loss in  temperature 

s e n s i t i v i t y  and  because  of the  high continuum leve ls .  

Thermometry of Line-Shape F i t t i n g  

The shapes  of  well-known  atomic l ines   provided  the  other  plasma  thermometer 

used  during t h i s  experiment. The f i t t i n g   p r o c e s s  w a s  done e s s e n t i a l l y  by 

choosing a s e t  of  plasma propert ies ,  computing the   r e su l t an t   r e l a t ive   i n t ens i ty  

profile,   broadening  this  by  the  instrument  function, and  comparing t h i s  against  

the measured relat ive  exposure  prof i le .  Then the plasma propert ies  were var ied 

u n t i l  a b e s t   f i t   t o   t h e   e x p e r i m e n t a l  shape w a s  obtained. This  procedure  in- 

c luded  the  effects   of   f ini te   opaci ty   and  involved  the whole experimental  shape 

rather   than  just   the   half-width.  The der ivat ion below a p p l i e s   t o  a s ingle  

l i n e  from neutral   atomic  nitrogen which has a Lorentzian  shape.  Other  atoms 

and  shapes were deal t   wi th  i n  a similar manner. 

* 

The l i n e  shape i s  normally  characterized  by a half   half-width y . For  neutral  

nitrogen,  the  temperature and electron  densi ty  dependence are  given  by Page 

e t  al .  as: 8 

y = K T  1/4 e 

The proport ional i ty   constant  K was obtained from the  tabulat ions of Wilson 

and N i ~ o l e t . ~  The computation  began  by  picking  first-estimate  values of T, 

n and %. These three  parameters were evaluated a t  the  same ref lec ted  

shock  Hugoniot s ta te   ( re f .   Table  A 2 )  and so, for   i t e ra t ive   purposes ,   they  

can  be  considered as a single  variable.   For  Lorentzian  l ines and neglecting 

shifts, the   spec t ra l   absorp t ion   coef f ic ien t  i s  given by 

e’ 

* 
The e f f e c t s  of  Doppler  broadening were negl ig ib le  for the conditions of t h i s  
experiment. 

37 



Y 
where $ i s  the   i n t eg ra t ed   l i ne   abso rp t ion   ( r e f .  Eq. 23). 

Now to   genera te  a spec t r a l   i n t ens i ty ,   t he  continuum  must  be  included.  This 

w a s  done by   es t imat ing   the   re la t ive   in tens i ty   o f   the  continuum, C ,  defined 

as c = I ~ / I ~ ~ .  Rewri t ing  this   expression  in   terms  of   absorpt ion  coeff ic ients  

( r e f .  Eq. 19) yie lds  

which  can  be  solved  explicit ly  for pA. This   value,   together   with  the  l ine C 

absorpt ion  coeff ic ient  (Eq. 30)  permits  computation  of  the  relative  spectral  

i n t e n s i t y   p r o f i l e  by the   r e l a t ion  

To compare th i s   t heo re t i ca l   p ro f i l e   t o   t he   expe r imen ta l   r e l a t ive   exposure  

profile,   the  instrument  function  cannot  be  neglected  since  spectral   shape 

i s  now an  important  parameter. The above t h e o r e t i c a l   i n t e n s i t y   p r o f i l e  was 

numerically  broadened  using Eq. (4) and the  instrument  function shown  on Fig. 

1. Thus a theo re t i ca l   r e l a t ive   exposure   p ro f i l e  was generated  based on 

assumed values of the  parameters T, ne, %, and C. 

The cr i ter ion  used t o  determine  the  quali ty of t h e   f i t  was based on the  RMS 

value  between  about  10-20  points  taken  from  the  experimental  profile  and  the 

theoret ical   values   generated a t  corresponding  wavelengths  (ref. Eq. 37 on p. 

53). The i terat ive  procedure  consis ted  of   varying  the two input  parameters 

(i. e. (T, ne, %) and C )  u n t i l  a minimum RMS value was found. A s  shown l a t e r ,  

these  minimum values  corresponded to   an   average   d i f fe rence  of .01-.04 u n i t s  

of re la t ive  exposure which i s  i n  good agreement  with  the  uncertainty  given 

by Eq. ( 2 8 ) .  



The dependence  of t h i s   f i t t i ng   p rocedure  on such  intensity-governing  para- 

meters as the  ni t rogen number densi ty  and f - n M e r  i s  r a the r  weak. This  can 

be  demonstrated  readily  by  again making the  assumption  that   the   radiat ion 

w a s  op t i ca l ly   t h in .  By working  backwards  through Eqs. (32), (3 l ) ,  and ( 3 0 )  , 
the   fol lowing  re la t ion i s  readi ly   obtained:  

1-10 2 

- 
1 + c(-) 

” 

2 (33) I?L 
0 1 + (-) x- x0 

Y 
Here it i s  c l ea r   t ha t   t he   op t i ca l ly - th in  shape i s  dependent  only on the  con- 

tinuum l e v e l  (which i s  perturbed),  the  wavelengths  (which  are  considered 

prec ise ly  known), and the  half   half-width which,  from Eq. (29),  depends 

weakly on temperature  and  linearly on electron  densi ty .  Thus the   o ther  

thermodynamic parameters  enter  only  through  consideration of a f in i t e   opac i ty  

and t h i s  w a s  usual ly  a relatively  unimportant ( b u t  nonnegligible)  effect .  

This  shape f i t t i n g  procedure w a s  appl ied   no t   on ly   to   neut ra l   n i t rogen   bu t  

a l s o   t o   t h e  Ha l i n e  (6563 A )  which w a s  present  as  an  impurity.  This  pre- 

sented  three  complications.  First  the  shape i s  not  Lorentzian  and i s  given 

in   t abu la r  form  by  Griem.” This  was handled by a program opt ion   in   the  

computer  and presented no g rea t   d i f f i cu l ty .  Secondly,  because  hydrogen w a s  

an  impurity,  the number density  could  not  be  obtained as before.   Instead it 

was determined from a peak spectral   intensity  obtained  using  the  spectrographic 

r e s u l t s   t o   s c a l e  a 6488 A polychromatic measurement  of a ni t rogen  mult iplet .  

This w a s  an  uncertain number b u t   r e c a l l  that the  number density i s  r e l a t i v e l y  

unimportant  provided  opacity  effects are small. F ina l ly  a controversy  exis ts  

as t o  whether  the G r i e m l ’  shapes  correctly  represent Ha. Morris e t  al.  

have ca l ibra ted  Ha agains t  the better-known  values of €@ and repor t  that 
the  Griem va lues   fo r  the H a  half-width  are  too narrow  by 28% a t  ne = 10 

and  by 14% a t  n = 1017  and c i t e   co r robora t ing   r e su l t s  by  Wiese a t  NBS. 

ll 

16 

e 
The Ha shape f i t t i n g  

t h i s  experiment  cannot 

was done using  both  shape  values  but as w i l l  be seen, 

shed l i g h t  on this   controversy.  
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Error  Analysis of  Line-Shape Thermometry 

For the  purpose of  this analysis,   the  measured  quantity w i l l  be   t aken   to   be  

the  l ine  half   half-width as given  by Eq. (29 ) .  Subs t i t u t ing   t h i s   exp res s ion  

i n t o  Eq. (13) and  performing  the  required  different ia t ion  yields:  

Here, as before ,   the   temperature   sensi t ivi ty   drops  sharply  with  temperature  

( ref .   Fig.  6) which i n   t h i s   c a s e   r e f l e c t s  the f a c t  that  the   e lec t ron   dens i ty  

i s  a slowly  changing  function  of  temperature a t  the  higher  temperatures. The 

proport ional i ty   constant  K i s  known t o  about 2 20% fo r   v i s ib l e   n i t rogen  

l i nes   and  a 2 10%  pressure  uncertainty  only  contributes  about L 5% t o   t h e  

temperature  uncertainty  because  the  derivative i s  about 0.5 ( ref .   Fig.  6) .  

To obta in   the   uncer ta in ty   in   the  half half-width measurement, it i s  necessary 

t o   a g a i n  assume opt ical ly- thin  condi t ions.  Then Eq. (33) i s  applicable  and, 

by  considering I x / I x o , h ,  and C as the  independent   var iables ,   the   total  

d i f f e r e n t i a l  of 7 can  be  obtained  by  straightforward  differentiation. The 

uncertainty i n  t he   r e l a t ive   i n t ens i ty  i s  given  by Eq. (28) which was shown 

to   y ie ld   reasonable   va lues  and,  because  the  continuum was perturbed  during 

t h e   f i t t i n g   p r o c e s s ,  it can  be  considered known t o  2 0.005 u n i t s  of r e l a t i v e  

i n t e n s i t y .   I n s e r t i n g   t h e s e   u n c e r t a i n t i e s   i n t o   t h e   t o t a l   d i f f e r e n t i a l   o f  

y i e l d s  : 

" dr  1 d 0.04 ( 1 - C )  2 0.005 dh 
Y 2  I, 
" "- x- x0 

I ("- - c )  
5 0  

(35) 

Th i s   y i e lds   t he   unce r t a in ty   i n  Y r e s u l t i n g  from a s ingle  measurement point .  

However the measurement was not done a t  a s ing le   po in t   bu t   r a the r  a t  many 

throughout   the  prof i le .  It i s  assumed tha t   t he   ove ra l l   unce r t a in ty  i s  t y p i c a l  
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of the  value a t  the   ha l f - in t ens i ty   po in t  of  the l i n e  contribution, i.e. 

Ih/IXO = C + 0.5 ( 1 - C )  where y = 2 ( L A o ) .  With these  assumptions,  the 

above equation becomes 

The wavelength  uncertainty w i l l  now be  neglected; it 

dh 
Y 
- ( 3 6 )  

w a s  c a r r i e d   t h i s   f a r   t o  

indicate   that   very  narrow  l ines   can  cause  diff icul ty .  The remaining  expression 

y i e lds   e r ro r s  of 2 4.5% a t  C = 0, f 5% a t  C = 0.5, and 2 6% a t  .C = 0.75. This 

l a t t e r   v a l u e  can  be unrealist ic  because  high continuum leve l s  imply large 

overlap  and  often  increase  the  difficulty of separat ing one l i n e  from another. 

This  source  of  uncertainty was not   included  in   the  error   analysis .  With t h i s  

r e se rva t ion   i n  mind, the  uncertainty  in   the  half   half-width measurement w i l l  

be taken t o  be L 5%. 

Thus the  temperature   uncertainty  resul t ing from the  shape-fi t t ing  process on 

n i t rogen   l ines  w a s  2 4.5% a t  12,000 K and this  r i s e s   t o  2 7% a t  15,000 K. A s  

w i l l  be shown in  the  next  chapter,   the  broadening  and  attendant  overlap a t  the  

higher  temperatures made it d i f f i cu l t   t o   ma in ta in   t he  L 5% measurement un- 

cer ta in ty .  Thus both   quant i ta t ive ly  and in   the   d i f f icu l t ies   exper ienced  a t  

the  higher  temperatures,   this  thermometric  technique was s i m i l a r   t o  that  of 

t h e   l i n e   i n t e n s i t y  measurements  discussed  previously. 

For Ha, the  shapes  are somewhat b e t t e r  known b u t   s i n c e   y ~ ( n , ) ~ ’ ~ ,   t h e  

temperature   sensi t ivi ty  i s  reduced  by 2 / 3  with  the r e s u l t  t h a t  the temperature 

uncer ta in t ies  from the  H a  measurement a re   qu i te  comparable to   t hose  of t h e  

nitrogen l ines  discussed  above. 

This  discussion  completes  the  derivation  of  the  requisite  analytical   equations 

t o  measure the  plasma  temperature  and  analyze  the  resultant  errors. 
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SPECTRAL SURVEYS 

The next  chapter w i l l  d i scuss   the  resu l t s  of t h e  plasma  temperature measure- 

ments. However before   the  equat ions of the  preceding  chapter  could  be  applied,  

t he   f ea tu re s  of the  emergent  radiation were ident i f ied   and  it was shown t h a t  

t h i s   r a d i a t i o n  was indeed  constant  with  time. 

Spec t r a l   Iden t i f i ca t ion  

The f i r s t   s t a g e  of t he   spec t r a l  work involved   the   ident i f ica t ion  of t h e  

various  spectral   features  using  t ime-resolved  spectrograms. The microdensito- 

meter   t races  from three such  spectrograms  are shown on Fig. 7 and  are  repre- 

sentat ive  of  a very low, an  intermediate,  and a high  incident  shock  velocity.  

The ordinate  on these   t r aces  i s  o p t i c a l   d e n s i t y  and r e c a l l  that t h i s  i s  

r e l a t ed   t o   t he   r e l a t ive   spec t r a l   exposure  (or i n t e n s i t y )   i n  a nonlinear way 

through  the H-D curves.   These  spectrograms  were  taken  early  in  the  contractual 

year  and  used  glass  optics and. an  unblocked  second  order.  Spectrograms  obtained 

later  with  quartz  optics  and  blocked  second  order were e s s e n t i a l l y   i d e n t i c a l  i n  
the  region shown.  The 2500-3400 A region  avai lable   with  quartz   opt ics  showed 

very l i t t l e  of i n t e r e s t  - no prominent l i n e s  and a smooth continuum. The l i g h t  

leak  apparent a t  the  red  end of the  middle   t race on Fig. 7 was t r a c e d   t o   t h e  

spectrograph  housing  and was repaired.  

The th ree   t r aces  on Fig. 7 contain a grea t   dea l  of qual i ta t ive  information 

about   the  plasma  radiat ion.   Firs t   note   that   whi le   the  temperature   increases  

re la t ive ly   s lowly ,   the   e lec t ron   dens i ty   increases   by   fac tors  of 5 or 6 between 

each  trace.  The bottom  trace shows a considerable amount of  molecular  band 

r ad ia t ion  which was pr imari ly  from t h e  N2 (1st neg. ) system. The band  heads 

of the  N2 (2nd  pos. ) system  are   a lso  discernable   but   considerably  less   pro-  

nounced. The top  two t r a c e s   c l e a r l y  show the  presence of continuum rad ia t ion  

but   even   qua l i ta t ive   s ta tements   about   the   spec t ra l   behavior   a re   d i f f icu l t   to  

make - note   the   s imi la r i ty   be tween  these   t races   and   the   spec t ra l   sens i t iv i ty  

of  the 2475 f i lm  (Fig.  4). 

+ 
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FIGURE 7. MICRODENSITOMETER TRACES OF RFPRESENTATNE  SPECTROGRAMS 



The character  of t h e  l i n e  r ad ia t ion  i s  most in te res t ing .  On the  bottom  trace,  

the  l ines  are  generally  prominent  and narrow. On the  middle   t race  they are 

s t i l l  prominent  but  considerably  broader  and many more l i n e s  and mul t ip l e t s  

a re   apparent ,   espec ia l ly   in   the  5-6,000 A region.   Final ly  on the   t op   t r ace  

t h e   l i n e s  have become broad,  the  continuum  has come up rapidly,  and many 

l i n e s  are d i f f i c u l t   t o   s e e  above t h e  continuum. Much of t he   s t ruc tu re  i n  

the  5-6,000 A region  has  disappeared. The 01 (6157) mul t ip le t  i s  i n t e r e s t -  

ing  because it undergoes a 20 A s h i f t  toward  the  red  and becomes not iceably 

asymmetric. 

10 

Th i s   r ap id   r i s e  of t h e  continuum as the  temperature  increases  can  be  quali ta- 

t ive ly   expla ined  from  theory. In  the  l as t  chapter  assuming (1) opt ica l ly- th in ,  

(2)   vis ible   region,  and (3) temperatures  about  12,000 K, it was shown t h a t   t h e  

temperature   sensi t ivi ty  for t he   i n t eg ra t ed   l i ne   i n t ens i ty  was 10 ( r e f .  Eq. 27). 

But   because  the  l ines   are  becoming broader a t  t h e  same t ime,   the  spectral  

i n t e n s i t y  a t  the   l ine   cen ters   does   no t   increase   near ly  as r ap id ly .   In   f ac t  

f o r  opt ical ly- thin  Lorentzian  l ines ,   the   temperature   sensi t ivi ty   of   the  

s p e c t r a l   i n t e n s i t y  a t  the   l i ne   cen te r  is only 3.5 which i s  the  difference 

between t h a t  of t he   i n t eg ra t ed   i n t ens i ty  (10 typ.)  and the  half   half-width 

(6.5 typ. ). (This  can  be  readily shown from Eq. 30 e t  al.  ) Retaining  the 

above  assumptions it can  be shown that the  temperature   sensi t ivi ty   for   the 

continuum (both  recombination  and  negative  ion  attachment  processes were 

included) i s  10 a t  12,000 K. Therefore on a spec t r a l   bas i s  as represented 

by  Fig. 7, t h e   i n t e n s i t y  a t  the   l ine   cen ters   increases  by T305 while  the 

continuum increases  by T l 0  and  thus  the  apparent submergence of t h e   l i n e s  i s  

not  unexpected. 

A l i s t i n g  of a l l  the  prominent  multiplets  and many of the   l esser   ones   tha t  

have  been i d e n t i f i e d  a t  one time or another i s  given i n  Table 1. The ident i -  

f ica t ion   process  w a s  g r e a t l y   f a c i l i t a t e d  by a computer l is t ing  of   the  prominent  

l i n e s  and  multiplets which  gave quant i ta t ive   c r i te r ia   no t   found  in   f ind ing  

l i s t s  o r  even m u l t i p l e t  t ab l e s .   Th i s   l i s t i ng  was based on the  NBS7 log gf data  

(if available)  together  with  the  half-widths  and  remaining gf data  of  Armstrong 
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TABLE 1. LISTING AND IDENTIF’ICATION OF PROMINENT AIR MULTIPLETS 

N I  

N I  

01 

NI 

N I  

01 

N I  

N I  

01 

01 

NI 

NI 

N I  

01 
N I  

N I  

N I  

01 

N I  

N I  

N I  

N I  

01 
N I  

N I  

N I  

01 
N I  

01 

10 

5 
* 
4 
6 

10 

9 
21 
6 
3 

13 
1 4  
20 

5 
* 

30 
29 
9 
-x 

* 
16 
22 

65 
31 
24 
* 

12 

32 
11 

4107 
4222 
6242 
4256 
41-46 
6157 
4928 
6490 

3692 
3947 
5349 
5295 
6644 
4368 
5 408 

6756 
6955 
6455 
5177 
4389 
6004 
6465 
6654 
6723 
5620 
5201 

5330 
5836 
5436 

Ye s 

Ye s 

No 
Ye s 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Ye s 

Ye s 

Yes 
? 

? 

Ye s 

Yes 

Ye  s 

Yes 
Yes 

Much broader  than  predicted 

Never saw t h i s  one. NBS misprint? 

Sh i f t s   t o  red,  stands  out 
Two l ines,  20 A separation 
Looks broad, many l ines  
Narrow and weak, often  buried 

Many lines, widely  spaced 

Single  line 

Broad 
Film sensi t ivi ty  down 

Broad 

Broad 
Combined with N121  above 
Under NI 20 

Under NI 30 

Very broad 

Broad 

* Tabulated by NBS7 , not   l is ted by Moore 
(x) Not tabulated  by NBS, l i s t e d  by Moore 

13 
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e t  a1.12 as tabulated  by  Wilson  and N i ~ o l e t . ~  The mul t ip le t s  were l i s t e d  

i n   o r d e r  of   decreasing  mult iplet   spectral   emission  coeff ic ient   for   the 

r e f l e c t e d  shock states of  Table A2. A spectral   order ing was selected  because 

of i t s  a p p l i c a b i l i t y   t o  film exposure (ref. Eq. 5) a l though  this   order ing 

involves   the  theoret ical   half-widths  which may be uncertain. The ranking 

of mul t ip l e t s   r a the r   t han   i nd iv idua l   l i nes  was a numerical  convenience  and 

can make a mult iplet   consis t ing of  narrow,  widely-spaced l ines   appear   too  

high on the  l ist .  However, t he  emphasis  here w a s  not on a precise   order ing 

but   ra ther  f o r  a qua l i t a t ive  l i s t  as a n   a i d   t o   i d e n t i f i c a t i o n .  While Table 

1 w a s  prepared  f rom  the  l is t ing a t  Us = 6.8 mm/psec, the  order ing  did  not  

change much a t  other  conditions  and  can be considered  applicable  over  the 

range of conditions shown on Fig. 7. Only multiplet   wavelengths  in  the 

2500-7000 A region were tabulated.  Most of  t he  I R  l i n e s  would l i e  a t  or 
near   the  top of t he  l i s t  and  hence a f u t u r e   e f f o r t  w i l l  be  directed  toward 

photographing  the I R  spectrum. 

It i s  evident from the comments on Table 1 t h a t   a l l   t h e   l i s t e d   m u l t i p l e t s  

were ident i f ied  with  but   three  except ions.  Two of these  underl ie   s t ronger  

mul t ip le t s  and  hence are   quest ionable   while   the  third - the  supposedly 

prominent  multiplet 01 (6242) - was never  seen. While t h i s   t a b l e  i s  not 

intended  to  be a complete l i s t i n g ,  it includes most of  the  prominent  multiplets.  

There  are  four  other  multiplets a t  wavelengths  about 4670, 4485, 4435, and 4350 A 
t ha t ,   un t i l   r ecen t ly ,   de f i ed   i den t i f i ca t ion .  However a comparison  with  the 

spectral   scans by Morris e t  a1.l' of a n i t rogen   a rc   def in i te ly   es tab l i shes  

these  t o  be nitrogen. 

* 

There a r e  severalmis-identifications on Fig. 7 that have  been r e c t i f i e d   i n  

Table 1. For example, on Fig. 7, the  01 (3947) ought t o  be 013, the  4670 A 
i den t i f i ca t ion  of O I l 7  and 01 i s  erroneous - t h e   l i n e s   a r e   f a r   t o o  narrow 

(also  see  above),  and  the 01 i den t i f i ca t ion  a t  6750 ought t o  be N I  . 

10 
18 

2 30 

The only  impuri ty   l ines   ever   posi t ively  ident i f ied  in   emission were those  of 

hydrogen - Hcu (6563) w a s  ever-present  and  prominent  and HB (4861) w a s  

apparent on  most spectrograms. The hydrogen  probably came from  water  vapor 
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e i the r   p re sen t  on t h e  shock  tube walls and  not removed by pumping or present 

i n   t h e  test gas where it was ineffect ively  t rapped.  The shock  tube w a s  

t yp ica l ly   evacua ted   t o  below 0.001 t o r r  wh i l e   t he   i n i t i a l   p re s su re  was 0.2 

t o r r .  The  number densi t ies   obtained  during  the Ha f i t t i ng   p rocedure   d i s -  

cussed  ear l ier   y ie lded  typical   hydrogen  concentrat ions of a small f r a c t i o n  

of a percent. 

If o ther   impur i t ies  were present ,   the i r   rad ia t ive   s igna tures  were  always 

bu r i ed   i n   t he   no i se   l eve l  of the film. This w a s  an  unexpected  result   since 

no claim i s  made f o r  extreme  shock  tube  cleanliness  although  the  tube w a s  

cleaned  by  dry-wiping  between  each  shot.  This  result means tha t   the   spec t ra l ly-  

in tegra ted   rad ia t ion  was not   s ignif icant ly   affected  by  impuri t ies ,  a t  l e a s t  i n  

the  2500-7000 A spec t r a l   i n t e rva l .  

On one sho t   t he   r ap id -c los ing   shu t t e r   f a i l ed   t o   c lo se  and the  spectrogram 

was exposed  by t h e   e n t i r e   r a d i a t i v e   h i s t o r y  of t he   r e f l ec t ed  shock  region. 

The resul tant   overexposed  f i lm  revealed a number of   absorpt ion  l ines  and the  

l i n e s  of  Fe, C r ,  N i ,  and A1 were pos i t i ve ly   i den t i f i ed .  The f i r s t  three  

probably came from t h e   s t a i n l e s s   s t e e l  shock  tube walls while  the  only 

aluminum known t o  be i n  the  system w a s  t ha t  of   the  t r igger   wire   in   the 

dr iver .  

Another  purpose of the  spectral   surveys was t o   l o c a t e   i n t e r v a l s  which  were 

f r e e  of l i n e   r a d i a t i o n  and  hence  could  be  used t o  measure the  continuum 

intensity  via  the  polychromator.   Unfortunately,  as a scru t iny  of  Fig. 7 
w i l l  show, there  w a s  no such  interval  where one could  unequivocally  state 

that an   i n t ens i ty  measurement was that  of only  the continuum.  Nevertheless, 

since two extra  polychromator  channels were ava i l ab le ,   ex i t  s l i ts  were 

placed  near  the  mercury  green  l ine (5460 A )  where one might hope t o  measure 

t h e  continuum  and a t  7032 A which was a fool ' s   paradise   s ince  the  f i lm  sensi-  

t i v i t y   ( F i g .  4) w a s  t o o   f a r  down to  see  anything.  These two channels  are 

ca l l ed  "continuum?"  because  about  the  best that can  be sa id  i s  t h a t  they 

yield  an  upper bound. Their main funct ion was t o  provide a b a s i s   f o r  
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comparison  against   the   cont inuum  intensi ty   levels   that  were a by-product of 

t h e   l i n e   i n t e n s i t y  measurements. 

Proof of  Steady  State 

This  section i s  devoted t o  a demonstration  of  the  temporal  behavior  of  the 

t r a c e s  from the  photomultiplier  tubes  in  the  polychromator  and  spectrograph 

(zero-order).  The objec t  i s  t o  show t h a t   t h e   r a d i a t i o n  w a s  f a i r l y   c o n s t a n t  

with  time  and  moreover tha t   the   behavior  of the   var ious   spec t ra l   fea tures  

was qui te  similar. 

This l a t te r  f a c t  i s  shown by  Fig. 8 which conta ins   t races  from an   ear ly  

polychromator  configuration where t h e   e x i t  s l i t s  were l o c a t e d   t o   o b t a i n   t h e  

t ime  behavior   o f   s ix   d i f fe ren t   spec t ra l   fea tures  - molecular   radiat ion,   l ines  

of N I  and 01, the  continuum?,  an  impurity  line,  and  the  zero-order  spectrum. 

A l l  s ix   t races   are   remarkably similar in   the i r   t empora l   behavior   and   th i s  

w a s  taken  to   indicate   the  presence  of   chemical   equi l ibr ium. The f a c t   t h a t  

the  nonspectral   zero-order   t race was among these   s ix  means t h a t  a white- 

l i gh t   pho tomul t ip l i e r   t r ace  i s  a va l id  measure  of  temporal  variations i n  

plasmas  of th is  type. The 30-40$ droop  began a t  about 30 psec  which w a s  

t he  end  of  spectrograph  exposure time. The N2 t r a c e  shows a small s igna l  

about   10   psec   p r ior   to   the   a r r iva l   o f   the   re f lec ted  shock  which  corresponds 

to   the  passage of the  incident  shock  through  the  f ield of view. The t r a c e s  

shown on  Fig. 8 a r e   t y p i c a l  of a ser ies   of   four   shots  a t  various  shock 

ve loc i t ies   t aken   ear ly   in   the   exper iment   to   es tab l i sh   the   p resence   o f  

chemical  equilibrium  and show that   t ime-integrated  spectroscopic   recording 

of  f i lm was a valid  technique. 

+ 

To further  demonstrate  the  temporal  behavior,   various  photoelectric  traces 

from  twelve  recent  shots  are shown on Fig.  9 where they   a re   a r ranged   in   o rder  

of increasing  incident  shock veloci ty .  The t r a c e s   a r e   p r i n c i p a l l y  from e i t h e r  

the  5469 A continuum  channel of the  polychromator or t he  model p r o f i l e  which 

was the  white-light  monitor  taken  between  the  energy  detectors  (see  ref. 1 f o r  

more d e t a i l s ) .   I f   n e i t h e r  of these  were avai lable ,   then  the  zero-order   t race 

of  the  spectrograph was used - t h i s  i s  less   desirable   here   because  the  rapid-  

c los ing   shut te r   t e rmina tes   the   t race  a t  the  end  of  the  exposure  time. When 
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Fig. 8 Photomultiplier Traces from Polychromator on Shot #590 
(Us = 6.85 m/psec)  
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avai lable ,   the   zero-order   t races  are superimposed on the   o the r s   t o   i nd ica t e  

these times. Because  of t h e   s i m i l a r i t y  between the  var ious  photoelectr ic  

t r a c e s  on any one shot ,   the   choice  of   the  par t icular  one used  here is  un- 

important. 

Although  shot-to-shot  variations are clear ly   apparent  on Fig. 9, the  broad 

t rend   of   these   t races  shows that they are g e n e r a l l y   f l a t   f o r  Us < 7.5 mm/ 
psec  while  those a t  higher  incident shock ve loc i t ies   genera l ly  show a gradual 

decrease  with time. This may very w e l l  have  been  caused  by  radiative  cooling 

although,  because  the  radiation i s  such a sensi t ive  funct ion of temperature, 

the  resul tant   temperature   decrease i s  qui te  small. For example, the  tempera- 

t u r e   s e n s i t i v i t y   o f   t h e   v i s i b l e  continuum a t  14,000 K (Us = 8.3 m/psec)  is  

7.7. Assuming a l iberal  15% decrease   in  the 5469 A continuum trace  over 

25 psec,  the  corresponding  drop i n  temperature would be  only 15/7.7 o r  2%. 

Further  because  the  thermometric measurement techniques  discussed  ear l ier  

were both  t ime-integrated  to  a cer ta in   ex ten t ,   the  measured  temperatures 

represent a time-averaged  value  which would deviate  from the  or iginal   value 

by about 1%. Considering that the  precis ion  of   the measurements  themselves 

was about 2 4%, t h i s   v a r i a t i o n  i s  ins igni f icant .  Thus for  the  purpose of 

measuring  plasma  temperatures,  the  assumptions of  chemical  equilibrium  and 

steady state conditions were valid.  

The tes t   t imes  behind  the  incident  shock were determined  through  other  photo- 

e lec t r ic   moni tors   ( see   re f .  1) and were generally 20-30 vsec.  For  these 

experiments,  the  geometry was such tha t   these   t imes   a re   very   near ly   equal   to  

t he  times r equ i r ed   fo r  a sonic  disturbance  from  the  reflected  shock-contact 

sur face   in te rac t ion   to   p ropagate   in to   the   f ie ld   o f  view.  These  would  be 

minimum values   for   the   re f lec ted  shock t e s t   t imes  and are compatible  with  the 

25-30 psec  spectrographic  exposure  times. 

Select ion of Plasma  Thermometers 

On the   bas i s   o f   scans   l ike   those  of Fig. 7, t he   va r ious   l i nes  and  multiplets 

used t o  measure the  plasma  temperature  both  through  shape  and  intensity 

measurements  were selected.  
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For i n t e n s i t y  measurements,  well-known,  prominent  atomic lines or mul t ip l e t s  

were desired.  The N I  (4935 A)  l i ne   and   t he  01" (6157) and N12' (6490) 9 I 

mul t ip l e t s  were selected  s ince  they  possessed  the fewest disadvantages. The 

N I  (4935) l i n e  w a s  b r i g h t  and  narrow,  but was l o c a t e d   i n  a spec t r a l   r eg ion  

where film sensi t ivi ty   var ia t ions  could  be  important   ( ref .   Fig.  4). The 

prominence  of the  01 (6157) overshadowed i t s  asymmetry  and red s h i f t .  The 

N I 2 l  (6490)   mult iplet  was not  always  prominent  and i s  not l isted by NBS, 

but  it was c lose  t o  Ha where an   abso lu t e   i n t ens i ty  w a s  needed  and it w a s  

tabulated  by  Wilson  and  Nicolet . '   In  retrospect  the N120 (6644) mul t ip l e t  

might  have  been a bet ter   choice  s ince it was l i s t e d  by NBS, but  N 1 2 1  was 

somewhat  more eas i ly   separa ted   f rom  o ther   l ines .  The polychromator  exit  

s l i t  widths were s e l e c t e d   t o  be  about   s ix   t imes  the  l ine or mult iplet   half  

ha l f -wid th   a t  nominal  conditions  and  are  tabulated below. The wavelengths 

a re   those  of the   cen ter l ines   and  Ah i s  t h e   f u l l   w i d t h  of each   ex i t  s l i t .  

9 

10 

7 

Spect ra l   fea ture  LA Ah,A 

N I ~  493 5 4.6 

0 I l0  6163 45.8 
Continuum? 5469 16.6 

N 1 2 1  6488 47.1 
Continuum? 7032 16.7 

For shapes,  the  candidate had t o  be a s ing le   l i ne   i n   add i t ion   t o   be ing   we l l -  

known and  prominent. N I  (4935) met t h i s  added r e s t r i c t i o n  and Ha (6563) 
was considered well-known despi te   the  shape  controversy  ment ioned  ear l ier .  

The better-known I@ (4861) was not  prominent  and  could  only  be  used on 

one shot when an  unusually  high (1.3%) hydrogen  concentration made it usable. 
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RESULTS 

The r e su l t s   o f   t he  plasma  temperature  measurements  are  presented  and  dis- 

cussed i n   t h i s   c h a p t e r .  They  were obtained on the   s ix   shots   for .which   bo th  

spectrographic  and  polychromatic  results  were  available.  These  shots  had 

incident  shock ve loc i t i e s   i n   t he   r ange  of 7-8 mm/psec and  yielded  average 

measured  temperatures  from 10,750 t o  l3,OOO K. Examples of the  techniques 

and   i n t e re s t ing   qua l i t a t ive  results w i l l  be  presented first.  

Examples of  Shape-Fitting 

In   t h i s   s ec t ion   a r e   p re sen ted  examples  of  the  shape-fitting  process  taken 

from these   s ix   shots .  The l i n e s  considered were the  4935 A l i n e  of N I  , 
Ha (6563 A )  and, on one occasion, €if3 (4861 A ) .  The c r i t e r ion   u sed   t o  

determine  the  best f i t  between  the  computer-generated  shape  and  the  experi- 

mental   prof i le  was tha t   t he  f i t  c r i t e r i o n  6e be a m i n i m u m  where: 

9 

Here e(hi)   refers   to   the  experimental   and  theoret ical   re la t ive  exposure 

values a t  a wavelength hi.  The minimum value  of  the f i t   c r i t e r i o n   i s  shown 

on the  examples  which  follow. 

Figure 10 shows the  measured p ro f i l e   and   t he   bes t - f i t   t heo re t i ca l  data poin ts  

f o r  Ha on one of the  slower  incident shock veloci t ies   using  the  shape  taken 

from Griem." The min imum value 6e = 0.033 was higher  than most f o r  this 

experiment. The f i t  using  the  Morr is   e t  al." cor rec t ion   to   the  Griem half 

half-width  (the  width a t  every  point was changed  by t h i s  amount) would be 

s imi la r   bu t  the r e su l t an t   e l ec t ron   dens i ty  would be  lower. The r e s u l t s   f o r  

N I  on t h i s  same shot are   given  in   Fig.  11 which also  contains   the  instrument  

f u n c t i o n   t o   i n d i c a t e   t h a t  it must be inc luded   in   the  data reduction  procedure 

f o r  shape  measurements on narrow l i n e s .  A s  indicated  by  the  value 6e = 0.011 

the   t heo re t i ca l   po in t s  f i t  t he  measured p r o f i l e   q u i t e  Well. 

9 
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Following th i s  shot  (which was t h e   f i r s t  o f   the   s ix)  it was decided t o  fit 

t h e   e n t i r e   p r o f i l e   r a t h e r   t h a n   j u s t   h a l f .  To f u l l y   u t i l i z e   t h e   f e a t u r e s   i n -  

he ren t   i n   t he  RMS f i t  c r i t e r i o n  (Eq. 37) ,  the  measured  profiles were read 

d i r e c t l y   i n t o   t h e  computer as taken  from  the  microdensitometer  traces  even 

though  these  profiles  contained  obvious  noise. An example  of a noisy   p rof i le  

i s  shown by Fig. 12 f o r  N I  a t  an  intermediate  shock  velocity.  Here the  

value 6e = 0.039 w a s  ra ther   high which w a s  t o  be  expected  from  the  nature 

of t he  measured p ro f i l e ,   bu t   t he   r e su l t an t   e l ec t ron   dens i ty   y i e lded  a 

temperature  in good agreement  with  the  other  measurements as w i l l  be shown 

l a t e r .  The e x i t  s l i t  width  of  the  polychromator A?, i s  shown i n   t h i s   f i g u r e  

for  informative  purposes  only - the  polychromatic  result  was not  used i n   t h e  

f i t t i n g   p r o c e s s  f o r  N19 and  only  in  a relat ively  unimportant  way f o r  Ha. 

9 

The N I  p rof i le   for   the   h ighes t   inc ident  shock ve loc i ty   o f   these   s ix   shots  

i s  shown by  Fig. l 3  which a l so   i nd ica t e s   t he   r ap id   r i s e   o f   t he   unde r ly ing  

continuum. The a t tendant   h igh   e lec t ron   dens i ty   b roadened   the   l ine   to   the  

point  where the  wing  of the  4915 A l i n e   i n   t h e  N19  multiplet  overlapped 

noticeably.   This  overlapping was accounted f o r  (approximately)  by  lowering 

t h e   p r o f i l e  on the   b lue  wing as shown. Another  and  probably  better  approach 

would be t o  f i t  bo th   l i nes  of t he  N I  multiplet   simultaneously.   This 

technique would be  applicable  here  because  there  are no other   adjacent   l ines  

t o  cause   d i f f icu l ty  ( N I  i s  s i n g u l a r   i n   t h i s   r e s p e c t ) .  Even though  the 

continuum l e v e l  was re la t ive ly   h igh ,   the  f i t  was qui te  good as indicated 

by  the low value  of  the f i t   c r i t e r i o n   ( 6 e  = 0.006). These las t  th ree   f i gu res  

a l s o   i n d i c a t e   t h a t  N I  does  indeed  have a Lorentzian  line  shape. 

9 

9 

9 

9 

A s  mentioned e a r l i e r ,  HB w a s  of ten  only  barely  discernable  above the  con- 

tinuum.  This  happens  because it i s  inherent ly  a weaker l i ne   t han  Ha ( the  

maximum absorp t ion   coef f ic ien t  i s  1/30  of t h a t   f o r  Ha) and i s  loca ted   i n  a 

region where the  a i r  continuum i s  higher. However,  on one shot  the H con- 

cent ra t ion  was abnormally  high (- 1.34) and HB stood  well  above the con- 

tinuum. This   p rof i le   and   the   resu l t s  of the  shape-f i t t ing  process   are  shown 

on Fig. 14. The ca lcu la t ions  were  done by hand using  the  shape  given  by 
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G r i e m l '  and  the  effects   of   the   instrument   funct ion  and  opaci ty  were neglected. 

The abcissa  of  Fig. 14 ind ica tes   tha t   the   ins t rument   func t ion  was r e l a t i v e l y  

qui te   narrow  while   an  intensi ty   calculat ion  revealed  that   the   peak  emissivi ty  

w a s  about 0.10 so opac i ty   e f f ec t s  were small. 

This   f igure shows t h a t   t h e   b e s t  fit profi le   corresponded  to   an  e lectron 

density  of 5 x 0". Port ions  of   the   shapes  for   e lectron  densi t ies  

perturbed  by 2 20% a r e  shown t o   i n d i c a t e   t h e   s e n s i t i v i t y   o f   t h e  f i t .  Hf3 

i s  a wel l - s tud ied   l ine  whose shape i s  reported  by Grieml' t o  be good t o  3% 
f o r  ne = 3 x - 3 x lo1' emm3 and T = 10-20,000 K. Because  of t h i s  

low uncertainty on the   t heo re t i ca l  shape, an error ana lys i s  similar t o   t h a t  

done e a r l i e r   i n d i c a t e s   t h a t  Hf3 w a s  a A 2% thermometer on th i s   sho t .   Th i s  

suggests  another  possible  thermometric  technique that w i l l  be   fur ther   discussed 

l a t e r .  

The reason why the  Ha, and HB shapes  cannot  be  used  simultaneously i s  

typ i f ied   by  t h i s  shot. The r e l a t ive   exposure   p ro f i l e s   fo r  N I 2 l  and Ha 
revea led   tha t   the  Ha, peak i n t e n s i t y  was 3.7 t imes   tha t   o f   the   fa i r ly-br ight  

N 1 2 1  mult iplet .   Scal ing up the  polychromatic  result  gave an  emissivity  very 

near   uni ty .  With th i s   h igh   opac i ty ,   the   shape- f i t t ing   p rocess  becomes f a r  

too  dependent on an   i n t ens i ty  measurement,  e.g.  lowering  the Ha, peak 

i n t e n s i t y  by 20% doubled   the   resu l tan t   bes t - f i t   e lec t ron   dens i ty .   This  i s  

obviously  an  unsatisfactory  si tuation  and  hence  the Ha, shape w a s  e s s e n t i a l l y  

useless  on this   shot .   This   effect   could  be  mit igated  by  shortening  the  path-  

length   and   la te r  t h i s  approach w i l l  be  further  discussed. However, f o r   t h e  

30.5 cm pathlengths of t h i s  experiment, it was impossible   to  measure both 

Ha and Hp simultaneously  under  conditions where the  shape-f i t t ing  process  

was meaningful  for  both  l ines.  

Examples of Line  Overlap 

Figure 13 revea led   tha t  a small overlap  occurred  between  the  l ines of N19 a t  

the  higher   e lectron  densi t ies .  While th i s   d id   no t   cause  much d i f f i c u l t y  on 

N I  , l ine   overlap  ser iously  l imited  the  usefulness   of   the   polychromatic   resul ts  9 
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f o r  and 0I1O. This i s  i l l u s t r a t e d  by Fig. 15 which contains   the  re la-  

t i v e  exposure  prof i les   for   the 6410-6570 A region for  three   shots  - an   in te r -  

mediate  and  the two extremes  of  incident  shock  velocity.   This  spectral  

region  contains one 01  and three NI mult iplets   and Ha. The wavelengths f o r  

these are indica ted  a t  the bottom  of t he   f i gu re  as i s  the position  and  width 

of the  appropriate  polychromator  exit  s l i t .  By superposing  the  three  profiles,  

t h e   e f f e c t s  of l ine  broadening,   shif t ing,   and  overlapping  and  the  r is ing  of  

t h e  continuum become most apparent. 

It i s  evident that only 01 , and Ha, are the  important   radiators  i n  9 

t h i s  region,  but  despite this  s impl i f ica t ion  it becomes i n c r e a s i n g l y   d i f f i c u l t  

to   separa te   the   cont r ibu t ions  from these   th ree   mul t ip le t s  a t  the  higher  in- 

cident shock ve loc i t i e s .   I n   f ac t ,  no attempt was made to   s epa ra t e  them on the  

upper   prof i le   (shot  606) because  the  errors  on the  resul tant   temperature  ob- 

ta ined  from the  N12' in tegra ted   in tens i ty  would be  unreasonably  large.  This 

t yp i f i e s   t he   d i f f i cu l t i e s   encoun te red  i n  a t tempt ing   to  measure t he   i n t ens i ty  

of a l i n e  o r  mul t ip le t  that i s  not  well   isolated.   Figure 15  a l s o   t y p i f i e s  

t h e   d i f f i c u l t i e s   i n   a t t e m p t i n g   t o  f i t  t h e  shape  of Ha s ince   the   p rof i le  i s  

strongly  influenced by the  overlap from  (and  from N120 on the  red  s ide 

of Ha). 

ExamDles of Combined Results 

Examples of t he  combined r e s u l t s  from the  polychromator  and  the  spectrograph 

are  given by the   fol lowing  three  f igures   (Figs .  16-18) which  again  represent 

an  intermediate  and  the  extremes  of  incident  shock  velocity. The s o l i d  

symbols on these   f igures   represent  the polychromatic   resul ts   ( ref .  Eq. S O )  

f o r   t h e   t h r e e   l i n e  and two continuum  measurements  using  the  exit s l i t s  

tabula ted  on p. 52. A s  d i scussed   ear l ie r ,   these  solid symbols represent  a 

spectral   in tensi ty   averaged  over   the  spectral   width  of   the  exi t '  s l i t .  

For  each of the  three  polychromatic measurements  which  included a l i n e  or 
multiplet,  combination with the   re la t ive   exposure   p rof i le  from the  spectro- 

graph  yielded a peak   spec t ra l   in tens i ty  (Eq. 12)  i f  t h e   e f f e c t  of the  instrument 
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funct ion was neglected. Also the   shape-f i t t ing  process   yielded a value f o r  
the  continuum l e v e l  (ref. p. 38). Both  of  these  values  are  indicated  by  the 

open  symbols  on  Figs. 16-18 and   r ep resen t   t rue   spec t r a l   i n t ens i t i e s .  

The main  purpose  of  these  plots w a s  t o  provide a graphical  comparison  between 

the  inferred  continuum  level from t h e   t h r e e   l i n e   i n t e n s i t y  measurements  and 

the  two d i r e c t  measurements  of the  continuum.  This  provided a consistency 

check  and on one occasion  uncovered  an  error  in  the  microdensitometric  process. 

For reasons  discussed  in   the  next   sect ion,   the   cont inuum  predict ion w a s  f i t  on 

the  4935 A continuum in tens i ty   and   the   resu l tan t   curves   a re  shown. These 

curves  were  generated  from a smeared  continuum  model  where the  photoionizat ion 

edges  are lumped and  hence de ta i l ed   spec t r a l   f ea tu re s   d i sappea r .  Hence l i t t l e  

more can  be  said  about  this  curve  except that the   o ther  continuum poin ts  l i e  

qui te   c lose o r  s l i g h t l y  above it. The important  fact  i s  that these   po in ts  

showed consistency  from  shot t o  shot. 

The Planck  function,  evaluated a t  the  temperatures   associated  with  the con- 

tinuum  predictions, i s  a l s o  shown on these   th ree   f igures .  It i s  noted   tha t  

the  Planck  function  changes  relatively  slowly  with  temperature.  The  much 

more r a p i d   r i s e  of the  continuum  and  the  attendant  approach  to  the  Planck 

funct ion i s  shown quant i ta t ively  by  these  three  f igures .  On Fig. 18, the  

N I  peak  emissivity w a s  0.29 while  the N I 2 l  value was about 0.5. Obviously, 

these  peak  emissivities  can  be  reduced  by  shortening  the  pathlength. 

9 

However of much more importance t o   t h e   v a l i d i t y  of the  temperature  measure- 

ments i s  t h e   f a c t   t h a t   t h e  continuum i n t e n s i t y  i s  approaching or even  exceed- 

ing   the   peak   in tens i t ies   o f   the   l ines .   This  i s  demonstrated  by  mentally 

p ic tur ing  where a curve  of  twice  the  continuum  prediction would f a l l  on 

Fig. 18. Now since  the  polychromatic measurement includes  contr ibut ions 

from both  the  l ines   and  the continuum,  high  continuum l e v e l s  mean t h a t   t h e  

l i n e   i n t e n s i t y  i s  becoming the  difference  between two la rge  numbers. As 
p o i n t e d   o u t   i n   t h e   e r r o r   a n a l y s i s ,   t h i s   l e a d s   t o   l a r g e   u n c e r t a i n t i e s   i n   t h e  

in t eg ra t ed   l i ne   i n t ens i ty  and  hence l a r g e   e r r o r s   i n   t h e   r e s u l t a n t  plasma 
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temperature. It i s  the   rap id ly- r i s ing  continuum,  and not  the  increased 

opacity,  that l imi ted   the   usefu lness  of t h i s  thermometric  technique. 

The Thermometric - Use of the Continuum 

A possible  thermometric  technique that has  not  been  discussed as yet   involves  

the  continuum i tself .  This i s  bas ica l ly   a t t rac t ive   because  of a high  tempera- 

t u r e   s e n s i t i v i t y   o f   t h e  continuum  and it i s  t h i s  that has made the l i n e  

measurements  increasingly  unattractive. However, t h e   t h e o r e t i c a l  continuum 

cross   sec t ions   a re   genera l ly   qu i te   uncer ta in   and  limit the  usefulness   of  

such a thermometer. 

But Morris e t  al .  have extensively  studied  the  continuum  of  nitrogen a t  

4955 A and recommend tha t  t he i r   va lues  of absolu te   in tens i ty   be   used   to   de te r -  

mine a plasma  temperature.   Accordingly,   the  values  for  the  spectral  continuum 

in tens i ty   o f  a i r  a t  4955 A taken  from  the  theoretical   predictions  (see ref. 1) 

which  used a smeared  continuum model  were  compared aga ins t   t he   de t a i l ed   r e su l t s  

of  Morris e t  a d 4  for   n i t rogen  a t  corresponding  temperatures  and  pressures. 

The agreement w a s  remarkable  (and  very  probably  fortuitous). The predic t ions  

were about 10% high   in   the  10,500-12,000 K range  (which i s  t o  be  expected 

when comparing a i r  to   n i t rogen)  and e s s e n t i a l l y   i n  agreement i n   t h e  13,000- 

14,000 K range  of  reflected  shock  conditions. 

14 

The r e su l t   o f   t he   i n t eg ra t ed   i n t ens i ty  measurement  and shape-f i t t ing  process  

on N19 (4935 A)  gave, as a by-product, a value  for  the  continuum  spectral  

i n t ens i ty .  Also the  continuum predict ions,  when f i t  on these  values,  were 

consis tent   with  the  other   four  continuum  measurements as shown by Figs.  16- 
18 and  thus  increased  our  confidence  in  these 4935 A values. Thus because 

good experimental   values  for  the 4935 A continuum s p e c t r a l   i n t e n s i t i e s  were 

avai lable   and  because  the  predict ions were e s s e n t i a l l y   i n  agreement w i t h  t he  

careful  experimental   studies  of  Morris e t  a1.,l4 it was decided t o   e v a l u a t e  

a plasma  temperature  based on these  predict ions.  The r e s u l t s  w i l l  be  dis-  

cussed  in   the  next   sect ion.  



Although  placing  an  exit  s l i t  over a l i n e  i s  admittedly  not  an optimum way 

t o   o b t a i n   t h e  continuum intensi ty ,   th is   thermometr ic   technique was appl ied 

a pos te r ior i   and  improvements in  technique  for  future  measurements  could 

obviously  be made.  The l a rge   t empera tu re   s ens i t i v i ty   i nhe ren t   i n   t h i s  

method i s  demonstrated  by  the  large  difference  between  the two continuum 

predict ions  placed on Fig. 1'7. 

Resul ts  of t he  Plasma Temperature  Measurements 

The culmination  of  the  spectroscopic  effort  i s  represented  by  Fig. 19 which 

shows t h e   r e s u l t s  of the  var ious plasma  temperature  measurements  plotted 

aga ins t   the  gasdynamic  value  obtained from the  incident  shock  velocity  and 

i n i t i a l  pressure  ( ref .   Table  A2). To a id   in   the   assessment  of t h e  data 

s c a t t e r ,  2 4% e r ro r   ba r s  were drawn about   the  l ine  represent ing  temperature  

equal i ty .  These bars   represent  a reasonable  estimate of the  experimental  

e r r o r s  for the  temperature  range shown and,  with  the  exception of shot 602, 

t h e   s c a t t e r  between a l l  t h e   r e s u l t s  on any one shot l i e  wi th in   the   he ights  

represented  by  these bars. 

The important   conclusions  to  be drawn from t h i s   f i g u r e  are f i r s t  that the  

measured  temperatures do not   c luster   about   the gasdynamic value as wouldbe 

expected i f  the  gasdynamic temperatures   were  representat ive  of   the  s ta te   of  

gas  and i f   t h e  measurement e r r o r s  were randomly dis t r ibuted.   Also some 

er ra t ic   behavior  i s  indicated - e.g.  the mean of the measurements on shots  

601 and 605 are   near ly   the  same while  the  gasdynamic  values  differ  by  almost 

1,000 K. This   e r ra t ic   behavior   a l so   sugges ts   tha t   the  gasdynamic  value  does 

not   adequately  def ine  the  s ta te   of   the   tes t   gas .  

Figure 19 contains a l l  t h e   r e s u l t s  that could  be  derived  from  the  six  shots 

f o r  which both  polychromatic  and  spectrographic  results were ava i lab le .  

Since  for  each  shot  there were 3 l i n e   i n t e n s i t y  measurements (NI , 01 , 
NI ) and 2 shape  measurements (NI and Ha), t h i s   shou ld   y i e ld  30 data 

po in t s .   I n   ac tua l i t y   t he re  were only 22. The l o s t   p o i n t s  were caused  by a 

misal igned  exi t  s l i t  (l), a bad  spot   in   the  negat ive  caused  by  faul ty  

9 10 
21 9 
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development (I-), off-scale  polychromator  traces (3) caused  by  an  unexpectedly 

h o t   s h o t ,   a n d   t h e   i n a b i l i t y   t o   u t i l i z e   t h e  N I  , Ha,, and 01” data on shot 

606 because of the   high  cont inuum  level   ( ref .   Fig.  15) .  

21 

On shot 603, the  unusually-high  hydrogen  concentration made Ha, unusable  but 

t h i s   i n   t u r n   y i e l d e d  a good p r o f i l e   f o r  HB ( ref .   Fig.  14) which, as dis-  

cussed   ear l ie r ,  w a s  a 2% thermometer. The resul tant   temperature  i s  gra t i fy-  

i ng ly   c lose   t o   t he  mean  of the  other  measurements.  Also  the N I  i n t e n s i t y  

measurements made possible  the  continuum  thermometer  discussed  earlier. 

These points   are   included on Fig. 19 and a l s o   l i e   q u i t e   n e a r   t h e  mean of  the 

measurements. Note a l s o   t h e  good correspondence  between  the HP and  the 

4935 A continuum r e s u l t s  on shot 603. 

9 

The above  statements  are  clarified  by  Fig.  20 which  compares the   devia t ion  

of  the  various measurements  from the   a r i thmet ic  mean of a l l  t h e   r e s u l t s  

( including  the 4935 A continuum but  excluding  the gasdynamic value)   avai lable  

on each  shot. The HP value  and  the  four 4935 A continuum  measurements l i e  

qu i t e   c lo se   t o   t he  mean value. It i s  i n t e r e s t i n g   t o   n o t e   t h a t   t h e   s c a t t e r  of 

the N I  in tegra ted  l i n e  i n t e n s i t y  measurements i s  about  twice  that  of t he  

4935 A continuum.  This must be  explained a t  l e a s t   i n   p a r t  by a higher  tempera- 

t u re   unce r t a in ty   fo r   t he  continuum  measurements  since  both  absolute  intensi- 

t i e s  were obtained  from  the same polychromatic  result .  

9 

Another  reason  for  preparing  Fig. 20 was t o  locate  possible  one-sided  devia- 

t i o n s  which  would p o i n t   t o  a systematic   error .  None i s  clear ly   apparent  

although  the 01” and NI’’ measurements do appear   s l igh t ly  below the  mean 

while  the N I  shapes a l l  l i e  above the  mean. These however are   within  the 

expected  errors  from unce r t a in t i e s   i n   t he   r e spec t ive  f-numbers  and  half  half- 

widths. 

9 

More important i s  the  l as t  column of  Fig. 20 which shows the  deviations  of 

the gasdynamic values of the  plasma  temperature.  These  are  definitely one- 

sided  and  average  about 4% above the  mean of the  measured  temperatures.  This 
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i s  a s ignif icant   deviat ion  and  indicates  that t h e   a c t u a l   r e f l e c t e d  shock 

temperature w a s  somewhat below the  gasdynamic value. The e r ra t ic   behavior  

of t he  gasdynamic value i s  exemplif ied  by  the  fact   that   there  i s  no corres- 

pondence  between t h e  magnitude of the  deviat ion  and  the  incident  shock 

velocity.  

A l l  the  Ha r e s u l t s  on Fig. 20 and  most  of those on Fig. 19 were  obtained 

using  the  shapes recommended by  Morris e t  a l . l l  A s  shown on Fig. 19, the  use 

of t h e  Grieml' shape would r a i se   t he  measured  temperatures  about 4%. A s  

indicated by Fig. 20, the  results  using  the  Morris  shapes were not   suf f ic ien t ly  

one- sided t o  make one shape a clear  choice  over  the  other. I n  f a c t ,   t o   c e n t e r  

the  Ha, temperatures  about  the  zero  deviation l i n e  would require   an  inter-  

mediate  shape  about  halfway  between  the two. * 

8 
The intermediate  shapes  recently computed by  Kepple  and G r i e m  meet t h i s   r e -  
quirement  and  probably  should be  used in   t he   fu tu re .  The reference i s  Kepple, 
Paul C., "Improved Stark   Prof i le   Calcu la t ions   for   the   F i r s t  Four Members of 
the Hydrogen Lyman and  Balmer Series,"  University of  Maryland Tech. Report 
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CONCLUSIONS AND RECOMMENDATIONS 

The measured  temperatures  of th is  experiment are i n  reasonable  agreement 

with  each  other   within  the  l imitat ions imposed  by the  expected  errors. How- 

ever  the mean of  these  measured  values l i es  about 4% below  the gasdynamic 

temperature.  Further,  although  the number of shots  i s  not as high  nor  the 

s c a t t e r  on any one shot as low as des i red ,   there   a re   ind ica t ions  that the 

actual  temperatures may be  randomly s c a t t e r e d   i n  a manner not  predictable 

from the   inc ident  shock veloci ty .  

To place  the resul ts  of t h i s  experiment  in  the  proper  perspective,   recall  

that   the   temperatures  were measured t o  shed l i g h t  on the  deviat ions between 

experiment  and  theory  for  total   radiation measurements. A t  l2,OOO K, which 

i s  representat ive of t he  measurements desc r ibed   he re in ,   t he   t heo re t i ca l   t o t a l  

r ad ian t   i n t ens i ty   p red ic t ions   l i e  above the  experimental   resul ts  by a f a c t o r  

of about 1 .5  ( ref .   Fig.  A l ) .  S ince   here   the   to ta l   in tens i ty   var ies  as the 

t en th  power  of temperature ,   th is   factor   of  1.5 could  be  explained  by a 4% 
temperature  difference. 

Thus the  average 4% difference  observed  between  the measured and the  gas- 

dynamic temperatures i s  ce r t a in ly   i n   t he   r i gh t   d i r ec t ion  and of about  the 

correct  magnitude to   exp la in  the deviation between  theory  and  the  experi- 

mental t o t a l   r a d i a t i o n  measurements. However it i s  d i f f i c u l t  i f  not  impossible 

t o   j u s t i f y  any  stronger  conclusions on the   bas i s  of s i x  i 4% measurements when 

a 4% e f f e c t  i s  all- important.  

The temperature  measurements  reported  herein were not   s ign i f icant ly   a f fec ted  

by radiat ive  cool ing phenomena. The ana lys i s  on  p. 53, which was based on 

actual   photoelectr ic   t races   obtained a t  temperatures  higher  than  those 

measured  herein, showed tha t   cool ing   e f fec ts  were less   than  1%. 

I n  t h i s  experiment,  temperatures were only  measured t o  13,000 IC which f e l l  

short   of  the  desired  goal  of 16,000 K. The combination  of the following two 

e f f e c t s  limited th i s  range: 

73 



1. The rap id  rise of  the  continuum made it d i f f i c u l t   t o  perform 

adequately  precise measurements of   the   rad ia t ive   quant i t ies .  

2. The temperature  sensit ivity  of  the  various  thermometric  techniques 

decreased  sharply. 

Thus i n  shor t  it rap id ly  became  more d i f f i c u l t   t o  make even  less-precise 

measurements. 

Nevertheless it i s  recommended tha t   addi t iona l   t empera ture  measurements  be 

made and  fur ther   that   these  be as prec ise  as poss ib l e .   C lea r ly   t h i s  w i l l  

require  a p re l imina ry   ana ly t i ca l   e f fo r t .  However exper ience   in   these  matters 

has been  gained  and  the  chapter on plasma  thermometry ou t l ines  a systematic 

method  of  approaching  the  problem. The following  thoughts  ought  to  be  kept 

i n  mind: 

1. A t  the   higher   temperatures ,   radiat ive  cool ing  effects  may become 

important  and  hence  not a l l  the  techniques  should  require that the  

plasma  be i n  a steady state. (A d i r ec t ,   pho toe lec t r i c  measurement 

of  the 4955 A continuum i s  a poss ib i l i t y   he re .  ) 

2. The plasma  could  be  seeded  with  another  specie  which would o f f e r  

attractive  advantages  (e.g.  the  shape of HB). 

Also  the  existing  experimental   techniques  should be  improved to   i nc lude  a 

measurement  of the  plasma pressure and the  use of a s t ep  wedge wi th   f i ne r  

s t e p s   t o   y i e l d  more poin ts  on the  H-D curve a t  higher   re la t ive  exposure 

levels .   In   addi t ion  the  pathlength  should  be  shortened  to  minimize opacity 

effects   and a l l  spectroscopic  apparatus  should  then  be  located on the  same 

s ide  of t he  shock  tube. 

This  report  i s  concluded  with a b r i e f  comment about   the  ramif icat ions  that  

these  improved  and  extended  property  measurements  would  have on the  measure- 

ments   of   the   total   radiant   intensi ty .  The e r ra t ic   behavior   o f   the  gasdynamic 
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I 
" 

temperature  encountered  during  this  research  strongly  suggests  that  plasma 

proper ty   and   to ta l   in tens i ty  measurements will have t o  be  performed  simul- 

taneously. While t h i s  would requi re   an   addi t iona l   e f for t ,   the   p resent   cav i ty  

gage configurat ion  (see  ref .  1) w a s  designed for simultaneous  measurements 

and t h e  TIlll gages  are  proven  and  reliable  energy  detectors. Thus t h i s   t a s k  

would not  require  an  inordinate amount  of time  and would do much toward 

val idat ing  the  current   s ta te-of- the-ar t   predict ions  for   the  radiant   intensi ty  

of high-  temperature air. 
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APPENDIX 

This  appendix  contains two f igures   and two tables included  to  supplement  the 

d iscuss ion   in   the  main t ex t .  

The f igu res   p re sen t   t he   s a l i en t   r e su l t s  of t he   l a t e s t   spec t r a l ly - in t eg ra t ed  

r ad ian t   i n t ens i ty  measurements taken  using  energy  detectors on both   th i s   and  

p r i o r  NASA contractual   effor ts .   This  work i s  desc r ibed   i n   r e f .  1. Figure 

A 1  presents   the  experimental   resul ts   and a theo re t i ca l   p red ic t ion   fo r   t he  

t o t a l   ( i . e .  windowless)  radiant  intensity  of a i r  while  Fig. A2 presents   the 

resu l t s   and  a predic t ion   for   the   rad ia t ion   t ransmi t ted   by  a quartz window. 

Table A1 contains   numerical   values   for   the  total   radiant   intensi ty   predict ion 

a t  the  condi t ions of t h i s  experiment .   These  predict ions  are   fe l t   to   be  repre-  

sentat ive  of   the   current   s ta te-of- the-ar t .  The or igin  of   these  predict ions 

i s  given i n   r e f .  1. It i s  noted   tha t   the   va lues   in   the  first column ( l i n e  , 
< 2,000 A )  do not  always  vary  smoothly  with  pathlength.   These  irregularit ies 

were caused  by  switching  from  an  analytic  expression to   an  exact   numerical  

f requency  integrat ion  for   the  equivalent   width of ce r t a in   l i ne   g roups   a f t e r  

t h e   l i n e s  had become strongly  overlapped.  This  caused 10% e r r o r s  i n  t h e   f i r s t  

column and,  of  course, much l e s s e r   o n e s   i n   t h e   t o t a l   i n t e n s i t y  column. 

Finally  Table A2 contains  a l i s t i n g  of  the thermodynamic s ta tes   and  the  species  

composition i n   t h e   r e f l e c t e d  shock region as computed  from the  Rankine-Hugoniot 

equations  and  an LMSC thermochemical  equilibrium program. The da ta   f rom  th i s  

t a b l e  were  used to   p repa re   t he   t heo re t i ca l   p red ic t ions  shown  on Figs. A1 and 

A2 and   cer ta in   par t s  were  used i n   t h e  plasma  thermometry  discussed i n   t h e  m a h  

t e x t  of t h i s   r e p o r t .  
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Fig. A1 Experimental  Results  and  Theoretical  Predictions for the   Tota l  
Radiant  Intensity.  
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TABLE A 1  

RADIANT INTENSITY  PRFDICTIONS AT CONDITIONS I N  THE REFIECTED SHOCK FEGION 
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1, I20 
1,430 
1,870 

2,870 
3,860 
5,110 
6,590 

4,090 
6,650 
8,740 
.1,300 
.4,300 

7,520 
.1,800 
-5,100 
.9,100 

1,770 

!4,000 

-1,400 
'I, 300 

!7,300 
13 , 700 

"7,000 
'4,900 

;8,300 
-6,800 

!l, 600 

;O, 900 
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TABU A2 

CALCULATED  THERMODYNAMIC STATES OF THE FXE'LECTED  SHOCK RJ3GION 

(P, = 0.2 Torr, Tl = 294 OK, Gas 79%  N2, 21% O2 by pressure) 
I 

H5 

4 g m  

1.107 +4 

1. 181+4 

1. 331+4 

1. 566+4 

1. 816+4 

2.078'~ 

2.350'~ 

2.646+4 
2.967+4 

NUMBED DENSITIES Dl PARTICLFS/(CM)3 
P 5 

atm 
e 1 I O I N + /  O + I  N 2 /  O2 N- 0- 

psec 

1.30 +12 2.184 

2.381 2. 34+12 3. 912-5 7.  

5 11+12 

4.144' 2 .  06+13 3 437 

4.083 - 
4.601 

2 .  64+13 

4.248-5 

4.889 4.028-~ 2 .  69+l3 

2 .  52+13 

+13 2.30 

3.947- 

3.946- 

5 9 374 

6.037 
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